首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

2.
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.  相似文献   

3.
Four new metal iodates, beta-Cs2I4O11, Rb2I6O15(OH)2.H2O, La(IO3)3, and NaYI4O12, have been synthesized hydrothermally, and the structures were determined by single-crystal X-ray diffraction techniques. All of the reported materials contain I5+ cations that are in asymmetric coordination environments attributable to their stereoactive lone pair. Second-order nonlinear optical measurements on noncentrosymmetric La(IO3)3 and NaYI4O12, using 1064-nm radiation, indicate that both materials have second-harmonic-generating properties with efficiencies of approximately 400xSiO2. Converse piezoelectric measurements revealed d33 values of 5 and 138 pm V-1 for La(IO3)3 and NaYI4O12, respectively. Infrared and Raman spectroscopy and thermogravimetric analyses are also presented for all of the reported materials. Crystal data: beta-Cs2I4O11, monoclinic, space group P2(1)/n (No. 14), with a=12.7662(14) A, b=7.4598(8) A, c=14.4044(16) A, beta=106.993(2) degrees, V=1311.9(2) A3, and Z=4; Rb2I6O15(OH)2.H2O, triclinic, space group P (No. 2), with a=7.0652(17) A, b=7.5066(18) A, c=18.262(4) A, alpha=79.679(4) degrees, beta=85.185(4) degrees, gamma=70.684(4) degrees, V=898.9(4) A3, and Z=2; La(IO3)3, monoclinic, space group Cc (No. 9), with a=12.526(2) A, b=7.0939(9) A, c=27.823(4) A, beta=101.975(4) degrees, V=2418.4(6) A3, and Z=4; NaYI4O12, monoclinic, space group Cc (No. 9), with a=31.235(3) A, b=5.5679(5) A, c=12.5451(12) A, beta=91.120(3) degrees, V=2181.3(4) A3, and Z=4.  相似文献   

4.
The reactions of RE(IO3)3 [RE = Nd, Sm, Eu] with I2O5 and MoO3 in a 1:2:2 molar ratio at 200 degrees C in aqueous media provide access to RE(MoO2)(IO3)4(OH) [RE = Nd (1), Sm (2), Eu (3)] as pure phases as determined from powder X-ray diffraction data. Single crystal X-ray diffraction experiments demonstrate that these compounds are isostructural and crystallize in the chiral and polar space group P2(1). The structures are composed of three-dimensional networks formed from eight-coordinate, square antiprismatic RE3+ cations and MoO2(OH)+ moieties that are bound by bridging iodate anions. The Mo(VI) centers are present in distorted octahedral environments composed of two cis-oxo atoms, a hydroxo group, and three bridging iodate anions arranged in a fac geometry. There are four crystallographically unique iodate anions in the structures of 1-3, one of these is actually present in the form of a IO3+1 polyhedron where a short interaction of 2.285(4) A is formed between the iodate anion and the hydroxo group bound to the Mo(VI) center. This interaction results in significant distortions of the iodate anion similar to those found in tellurites with TeO3+1 units. Two of the four iodate anions are aligned along the polar b-axis, imparting the required polarity to these compounds. Second-harmonic generation (SHG) measurements on sieved powders of 1 show a response of 350 x alpha-quartz. Crystallographic data: 1, monoclinic, space group P2(1), a = 6.9383(5) A, b = 14.0279(9) A, c = 7.0397(5) A, beta = 114.890(1) degrees, Z = 2; 2, monoclinic, space group P2(1), a = 6.9243(6) A, b = 13.963(1) A, c = 7.0229(6) A, beta = 114.681(1) degrees, Z = 2; 3, monoclinic, space group P2(1), a = 6.9169(6) A, b = 13.943(1) A, c = 7.0170(6) A, beta = 114.542(1) degrees, Z = 2.  相似文献   

5.
The alkali metal and alkaline-earth metal uranyl iodates K(2)[(UO(2))(3)(IO(3))(4)O(2)] and Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) have been prepared from the hydrothermal reactions of KCl or BaCl(2) with UO(3) and I(2)O(5) at 425 and 180 degrees C, respectively. While K(2)[(UO(2))(3)(IO(3))(4)O(2)] can be synthesized under both mild and supercritical conditions, the yield increases from <5% to 73% as the temperature is raised from 180 to 425 degrees C. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), however, has only been isolated from reactions performed in the mild temperature regime. Thermal measurements (DSC) indicate that K(2)[(UO(2))(3)(IO(3))(4)O(2)] is more stable than Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) and that both compounds decompose through thermal disproportionation at 579 and 575 degrees C, respectively. The difference in the thermal behavior of these compounds provides a basis for the divergence of their preparation temperatures. The structure of K(2)[(UO(2))(3)(IO(3))(4)O(2)] is composed of [(UO(2))(3)(IO(3))(4)O(2)](2)(-) chains built from the edge-sharing UO(7) pentagonal bipyramids and UO(6) octahedra. Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O) consists of one-dimensional [(UO(2))(2)(IO(3))(2)O(2)](2)(-) ribbons formed from the edge sharing of distorted UO(7) pentagonal bipyramids. In both compounds the iodate groups occur in both bridging and monodentate binding modes and further serve to terminate the edges of the uranium oxide chains. The K(+) or Ba(2+) cations separate the chains or ribbons in these compounds forming bonds with terminal oxygen atoms from the iodate ligands. Crystallographic data: K(2)[(UO(2))(3)(IO(3))(4)O(2)], triclinic, space group P_1, a = 7.0372(5) A, b = 7.7727(5) A, c = 8.9851(6) A, alpha = 93.386(1) degrees, beta = 105.668(1) degrees, gamma = 91.339(1) degrees, Z = 1; Ba[(UO(2))(2)(IO(3))(2)O(2)](H(2)O), monoclinic, space group P2(1)/c, a = 8.062(4) A, b = 6.940(3) A, c = 21.67(1), beta= 98.05(1) degrees, Z = 4.  相似文献   

6.
Two americium(III) iodates, beta-Am(IO3)3 (I) and alpha-Am(IO3)3 (II), have been prepared from the aqueous reactions of Am(III) with KIO(4) at 180 degrees C and have been characterized by single-crystal X-ray diffraction, diffuse reflectance, and Raman spectroscopy. The alpha-form is consistent with the known structure type I of anhydrous lanthanide iodates. It consists of a three-dimensional network of pyramidal iodate groups bridging [AmO8] polyhedra where each of the americium ions are coordinated to eight iodate ligands. The beta-form reveals a novel architecture that is unknown within the f-element iodate series. beta-Am(IO3)3 exhibits a two-dimensional layered structure with nine-coordinate Am(III) atoms. Three crystallographically unique pyramidal iodate anions link the Am atoms into corrugated sheets that interact with one another through intermolecular IO3-...IO3- interactions forming dimeric I2O10 units. One of these anions utilizes all three O atoms to simultaneously bridge three Am atoms. The other two iodate ligands bridge only two Am atoms and have one terminal O atom. In contrast to alpha-Am(IO3)3, where the [IO3] ligands are solely corner-sharing with [AmO8] polyhedra, a complex arrangement of corner- and edge-sharing mu2- and mu3-[IO3] pyramids can be found in beta-Am(IO3)3. Crystallographic data: I, monoclinic, space group P2(1)/n, a = 8.871(3) A, b = 5.933(2) A, c = 15.315(4) A, beta = 96.948(4) degrees , V = 800.1(4) A(3), Z = 4; II, monoclinic, space group P2(1)/c, a = 7.243(2) A, b = 8.538(3) A, c = 13.513(5) A, beta = 100.123(6) degrees , V = 822.7(5) A(3), Z = 4.  相似文献   

7.
The 1/2V2O5-H2C2O4/H3PO4/NH4OH system was investigated using hydrothermal techniques. Four new phases, (NH4)VOPO(4).1.5H2O (1), (NH4)0.5VOPO(4).1.5H2O (2), (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O (3), and (NH4)2[VO(HPO4)]2(C2O4).H2O (4), have been prepared and structurally characterized. Compounds 1 and 2 have layered structures closely related to VOPO(4).2H2O and A0.5VOPO4.yH2O (A = mono- or divalent metals), whereas 3 has a 3D open-framework structure. Compound 4 has a layered structure and contains both oxalate and phosphate anions coordinated to vanadium cations. Crystal data: (NH4)VOPO(4).1.5H2O, tetragonal (I), space group I4/mmm (No. 139), a = 6.3160(5) A, c = 13.540(2) A, Z = 4; (NH4)0.5VOPO(4).1.5H2O, monoclinic, space group P2(1)/m (No. 11), a = 6.9669(6) A, b = 17.663(2) A, c = 8.9304(8) A, beta = 105.347(1) degrees, Z = 8; (NH4)2[VO(H2O)3]2[VO(H2O)][VO(PO4)2]2.3H2O, triclinic, space group P1 (No. 2), a = 10.2523(9) A, b = 12.263(1) A, c = 12.362(1) A, alpha = 69.041(2) degrees, beta = 65.653(2) degrees, gamma = 87.789(2) degrees, Z = 2; (NH4)2[VO(HPO4)]2(C2O4).5H2O, monoclinic (C), space group C2/m (No. 12), a = 17.735(2) A, b = 6.4180(6) A, c = 22.839(2) A, beta = 102.017(2) degrees, Z = 6.  相似文献   

8.
Novel alkaline earth metal aryl-substituted silylamides were prepared using alkane (Mg) and salt elimination reactions (Mg, Ca, Sr, and Ba). The salt elimination regime involved the treatment of the alkaline earth metal iodides with 2 equiv of the respective potassium amide KNDiip(SiMe(3)), (Diip = 2,6-i-Pr(2)C(6)H(3)). The organomagnesium source for the alkane elimination was ((n)()Bu/(s)()Bu)(2)Mg. All compounds were characterized using (1)H, (13)C NMR, and IR spectroscopy, in addition to X-ray crystallography (except Mg[NDiip(SiMe(3))](2)THF(2)). Crystal data with Mo Kalpha (lambda = 0.710 73 A) are as follows: Mg[NDiip(SiMe(3))](2), 1, a = 9.4687(6) A, b = 9.6818(6) A, c = 17.9296(1) A, alpha = 96.487(1) degrees, beta = 94.537(1) degrees, gamma = 89.222(1) degrees, V = 1608.8(2) A(3), Z = 2 (two independent molecules), triclinic, space group P(-)1, R1 (all data) = 0.0508; (n)()BuMg[NDiip(SiMe(3))]THF(2), 2, a = 9.5413(1) A, b = 16.493(2) A, c = 9.8218(1) A, beta = 108.149(2) degrees, V = 1468.7(4) A(3), Z = 2, monoclinic, space group P2(1), R1(all data) = 0.1232; Ca[NDiip(SiMe(3))](2)THF(2), 4, a = 9.7074(1) A, b = 20.9466(4) A, c = 21.6242(3) A, alpha = 73.573(1) degrees, beta = 78.632(1) degrees, gamma = 89.621(1) degrees, V = 4129.1(1) A(3), Z = 4 (two independent molecules), triclinic, space group P(-)1, R1 (all data) = 0.0902; Sr[NDiip(SiMe(3))](2)THF(2), 5, a = 20.5874(5) A, b = 9.8785(2) A, c = 20.8522(5) A, beta = 102.035(2) degrees, V = 4147.6(2) A(3), Z = 4 (two independent molecules), monoclinic, space group P2/n, R1 (all data) = 0.0756; Ba[NDiip(SiMe(3))](2)THF(2), 6, a = 20.5476(2) A, b = 10.0353(2) A, c = 20.9020(4) A, beta = 101.657(1) degrees, V = 4221.0(1) A(3), Z = 4 (two independent molecules), monoclinic, space group P2/n, R1 (all data) = 0.0573.  相似文献   

9.
Four new layered mixed-valence vanadium oxides, which contain interlamellar organic cations, alpha-(H(3)N(CH(2))(2)NH(3))[V(4)O(10)] (1a), beta-(H(3)N(CH(2))(2)NH(3))[V(4)O(10)] (1b), alpha-(H(2)N(C(2)H(4))(2)NH(2))[V(4)O(10)] (2a), and beta-(H(2)N(C(2)H(4))(2)NH(2))[V(4)O(10)] (2b), have been prepared under hydrothermal conditions and their single-crystal structures determined: 1a, triclinic, space group P&onemacr;, a = 6.602(2) ?, b = 7.638(2) ?, c = 5.984(2) ?, alpha = 109.55(3) degrees, beta = 104.749(2) degrees, gamma = 82.31(3) degrees, Z = 1; 1b, triclinic, P&onemacr;, a = 6.387(1) ?, b = 7.456(2) ?, c = 6.244(2) ?, alpha = 99.89(2) degrees, beta = 102.91(2) degrees, gamma = 78.74(2) degrees, Z = 1; 2a, triclinic, P&onemacr;, a = 6.3958(5) ?, b = 8.182(1) ?, c = 6.3715(7) ?, alpha = 105.913(9) degrees, beta = 104.030(8) degrees, gamma = 94.495(8) degrees, Z = 1; 2b, monoclinic, space group P2(1)/n, a = 9.360(2) ?, b = 6.425(3) ?, c = 10.391(2) ?, beta = 105.83(1) degrees, Z = 2. All four of the compounds contain mixed-valence V(5+)/V(4+) vanadium oxide layers constructed from V(5+)O(4) tetrahedra and pairs of edge-sharing V(4+)O(5) square pyramids with protonated organic amines occupying the interlayer space.  相似文献   

10.
Dai Z  Shi Z  Li G  Zhang D  Fu W  Jin H  Xu W  Feng S 《Inorganic chemistry》2003,42(23):7396-7402
A family of inorganic-organic hybrid vanadium selenites with zero-, one-, two-, and three-dimensional structures, (1,10-phen)(2)V(2)SeO(7), (2,2'-bipy)VSeO(4), (4,4'-bipy)V(2)Se(2)O(8), and (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O (where phen = phenanthroline and bipy = bipyridine), were hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Different bidentate organodiamine ligands and reactant concentrations were used in the four reaction systems, which are responsible for the variety of structural dimensions of the compounds. (1,10-phen)(2)V(2)SeO(7) crystallizes in a monoclinic system with space group P2(1)/n and cell parameters a = 8.6509(3) A,( )b = 7.8379(2) A, c = 34.0998(13) A, beta = 91.503(2) degrees, and Z = 4. (2,2'-bipy)VSeO(4) crystallizes in a monoclinic system with space group C2/c and cell parameters a = 17.0895(12) A, b = 14.7707(10) A, c = 11.7657(8) A, beta = 131.354(3) degrees, and Z = 8. (4,4'-bipy)V(2)Se(2)O(8) crystallizes in a triclinic system with space group Ponemacr; and cell parameters a = 7.1810(10) A, b = 10.8937(13) A, c = 11.1811(15) A, alpha = 115.455(3) degrees, beta = 107.582(3) degrees, gamma = 91.957(4) degrees, and Z = 2. (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O crystallizes in a monoclinic system with space group Pc and cell parameters a = 7.9889(9) A, b = 7.8448 A, c = 23.048(3) A, beta = 99.389(4) degrees, and Z = 2. (1,10-phen)(2)V(2)SeO(7) has an isolated structure, (2,2'-bipy)VSeO(4) has a chain structure, (4,4'-bipy)V(2)Se(2)O(8) has a layered structure, and (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O has a framework structure. The chains are constructed from VO(4)N(2) octahedra and SeO(3) pyramids, laced by organic ligands (2,2'-bipy). The layers consist of vanadium selenite chains [(VO)(2)(SeO(3))(2)]( infinity ), linked by 4,4'-bipy molecules. The framework is composed of vanadium selenite sheets [V(4)Se(3)O(16)]( infinity ), pillared by 4,4'-bipy molecules. All of the compounds are thermally stable to 300 degrees C, and the magnetic susceptibilities confirm the existence of tetravalent V atoms in the antiferromagnetic (4,4'-bipy)V(2)Se(2)O(8) complex and mixed tetravalent and pentavalent V atoms in the paramagnetic complex (4,4'-bipy)(2)V(4)Se(3)O(15).H(2)O.  相似文献   

11.
Investigation of the aqueous coordination chemistry for citrate and molybdenum(VI) resulted in the isolation of molybdenum(VI) citrato monomeric raceme and dimer K4[MoO3(cit)].2H2O (1) and K4[(MoO2)2O(Hcit)2].4H2O (2) (H4cit = citric acid). Complex 1 can serve as the first structurally characterized monomeric citrato molybdate and may represent an early mobilized precursor in the biosynthesis of FeMo-co (FeMo-cofactor). The two complexes have been characterized by elemental analyses and IR and NMR spectroscopies. The IR and NMR spectra are consistent with a monomeric species or a monooxo-bridged dinuclear structure, as revealed by a single crystal X-ray diffraction study. Compound 1 is monoclinic space group P2(1)/c with a = 7.225(1) A, b = 9.151(2) A, c = 22.727(2) A, beta = 94.93(1) degrees, V = 1497.1(7) A3, and Z = 4. Full-matrix least-squares refinement resulted in residuals of R = 0.027 and Rw = 0.032. The molybdenum atom forms an octahedral coordination with three oxo groups and one tridentate citrate, in which the latter is coordinated through the alkoxy and vicinal carboxyl and much more weakly by one of the two terminal groups [2.411(3) A]. Compound 2 is triclinic space group P1 with a = 8.2728(8) A, b = 8.9514(8) A, c = 10.0605(9) A, alpha = 101.673(8) degrees, beta = 100.672(7) degrees, gamma = 112.938(7) degrees, V = 642.5(3) A3, and Z = 1. Full-matrix least-squares refinement resulted in residuals of R = 0.033 and Rw = 0.039. The complex anion contains a linear (O2Mo)O(MoO2) core with the bridging oxo group lying at the center of inversion symmetry (Mo-Ob-Mo, 180 degrees). Each citrate ligand is three-coordinated to one molybdenum atom through the deprotonated hydroxy, alpha-carboxyl, and one beta-carboxyl group, making each metal atom six-coordinate.  相似文献   

12.
Six new actinide metal thiophosphates have been synthesized by the reactive flux method and characterized by single-crystal X-ray diffraction: Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6) (I), K(10)Th(3)(P(2)S(7))(4)(PS(4))(2) (II), K(5)U(PS(4))(3) (III), K(5)Th(PS(4))(3) (IV), Rb(5)Th(PS(4))(3) (V), and Cs(5)Th(PS(4))(3) (VI). Compound I crystallizes in the monoclinic space group P2(1)/c with a = 33.2897(1) A, b = 14.9295(1) A, c = 17.3528(2) A, beta = 115.478(1) degrees, Z = 8. Compound II crystallizes in the monoclinic space group C2/c with a = 32.8085(6) A, b = 9.0482(2) A, c = 27.2972(3) A, beta = 125.720(1) degrees, Z = 8. Compound III crystallizes in the monoclinic space group P2(1)/c with a = 14.6132(1) A, b = 17.0884(2) A, c = 9.7082(2) A, beta = 108.63(1) degrees, Z = 4. Compound IV crystallizes in the monoclinic space group P2(1)/n with a = 9.7436(1) A, b = 11.3894(2) A, c = 20.0163(3) A, beta = 90.041(1) degrees, Z = 4, as a pseudo-merohedrally twinned cell. Compound V crystallizes in the monoclinic space group P2(1)/c with a = 13.197(4) A, b = 9.997(4) A, c = 18.189(7) A, beta = 100.77(1) degrees, Z = 4. Compound VI crystallizes in the monoclinic space group P2(1)/c with a = 13.5624(1) A, b = 10.3007(1) A, c = 18.6738(1) A, beta = 100.670(1) degrees, Z = 4. Optical band-gap measurements by diffuse reflectance show that compounds I and III contain tetravalent uranium as part of an extended electronic system. Thorium-containing compounds are large-gap materials. Raman spectroscopy on single crystals displays the vibrational characteristics expected for [PS(4)](3)(-), [P(2)S(7)](4-), and the new [P(3)S(10)](5)(-) building blocks. This new thiophosphate building block has not been observed except in the structure of the uranium-containing compound Cs(8)U(5)(P(3)S(10))(2)(PS(4))(6).  相似文献   

13.
Three new strontium vanadium borophosphate compounds, (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O (Sr-VBPO1) (1), (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O (Sr-VBPO2) (2), and (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4][V2P2BO12]6 10H2O (Sr-VBPO3) (3) have been synthesized by interdiffusion methods in the presence of diprotonated ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane. Compound 1 has a chain structure, whereas 2 and 3 have layered structures with different arrangements of [(NH4) [symbol: see text] [V2P2BO12]6] cluster anions within the layers. Crystal data: (NH4)2(C2H10N2)6[Sr(H2O)5]2[V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 21.552(1) A, b = 27.694(2) A, c = 20.552(1) A, beta = 113.650(1) degrees, Z = 4; (NH4)2(C3H12N2)6[Sr(H2O)4]2[V2P2BO12]6 17H2O, monoclinic, space group I2/m (no. 12), a = 15.7618(9) A, b = 16.4821(9) A, c = 21.112(1) A, beta = 107.473(1) degrees, Z = 2; (NH4)3(C4H14N2)4.5[Sr(H2O)5]2[Sr(H2O)4] [V2P2BO12]6 10H2O, monoclinic, space group C2/c (no. 15), a = 39.364(2) A, b = 14.0924(7) A, c = 25.342(1) A, beta = 121.259(1) degrees, Z = 4. The differences in the three structures arise from the different steric requirements of the amines that lead to different amine-cluster hydrogen bonds.  相似文献   

14.
The syntheses, structures, and characterization of four new lead(II)-tellurium(IV)-oxide halides, Pb(3)Te(2)O(6)X(2) and Pb(3)TeO(4)X(2) (X = Cl or Br) are reported. The materials are synthesized by solid-state techniques, using Pb(3)O(2)Cl(2) or Pb(3)O(2)Br(2) and TeO(2) as reagents. The compounds have three-dimensional structural topologies consisting of lead-oxide halide polyhedra connected to tellurium oxide groups. In addition, the Pb(2+) and Te(4+) cations are in asymmetric coordination environments attributable to their stereoactive lone pair. We also demonstrate that Pb(3)Te(2)O(6)X(2) and Pb(2)TeO(4)X(2) can be interconverted reversibly through the loss or addition of TeO(2). X-ray data: Pb(3)Te(2)O(6)Cl(2), monoclinic, space group C2/m (No. 12), a = 16.4417(11) A, b = 5.6295(4) A, c = 10.8894(7) A, beta = 103.0130(10) degrees, Z = 4; Pb(3)Te(2)O(6)Br(2), monoclinic, space group C2/m (No. 12), a = 16.8911(8) A, b = 5.6804(2) A, c = 11.0418(5) A, beta = 104.253(2) degrees, Z = 4; Pb(3)TeO(4)Cl(2), orthorhombic, space group Bmmb (No. 63), a = 5.576(1) A, b = 5.559(1) A, c = 12.4929(6) A, Z = 4; Pb(3)TeO(4)Br(2), orthorhombic, space group Bmmb (No. 63), a = 5.6434(4) A, b = 5.6434(5) A, c = 12.9172(6) A, Z = 4.  相似文献   

15.
The hydrothermal reaction of NpO(2) with IO(3)(-) in the presence of nitrate results in the formation of NpO(2)(IO(3)) (1). Under similar conditions, NpO(2) reacts with AgNO(3) and SeO(2) to yield alpha-AgNpO(2)(SeO(3)) (2) and beta-AgNpO(2)(SeO(3)) (3). The structure of 1 consists of distorted pentagonal bipyramidal Np(V) centers that are bridged by iodate anions. In addition, the oxo atoms of the neptunyl(V) cations coordinate adjacent Np(V) centers creating layers that are linked into a three-dimensional network structure by the iodate anions. The structure is polar owing to the alignment of the stereochemically active lone pair of electrons on the iodate anions along the c-axis. alpha-AgNpO(2)(SeO(3)) (2) forms a layered structure consisting of hexagonal bipyramidal NpO(8) polyhedra that are bound by chelating and bridging selenite anions. The primary and secondary structures of 3 are similar to those of 1, and neptunyl-neptunyl interactions are partially responsible for the creation of a three-dimensional network structure. However, the selenite anions in 3 are rotated with respect to the iodate anions found in 1, and the structure is centrosymmetric. The network found in 3 consists of interconnecting, approximately square channels that house the Ag(+) cations. A bond-valance sum parameter of 2.036 A for Np(V) bound exclusively to oxygen has been developed with b = 0.37 A. Crystallographic data: 1, orthorhombic, space group Pna2(1), a = 13.816(2) A, b = 5.8949(8) A, c = 5.5852(8) A, Z = 4; 2, monoclinic, space group P2(1)/n, a = 4.3007(3) A, b = 9.5003(7) A, c = 11.5877(9) A, beta = 95.855(1) degrees, Z = 4; 3, triclinic, space group Ponemacr;, a = 7.1066(6) A, b = 8.3503(7) A, c = 8.3554(7) A, alpha = 89.349(1) degrees, beta = 77.034(1) degrees, gamma = 76.561(1) degrees, Z = 2.  相似文献   

16.
We have prepared Am(IO(3))(3) as a part of our continuing investigations into the chemistry of the 4f- and 5f-elements' iodates. Single crystals were obtained from the reaction of Am(3+) and H(5)IO(6) under mild hydrothermal conditions. Crystallographic data on an eight-day-old crystal are (21 degrees C, Mo Kalpha, lambda = 0.71073 Angstroms): monoclinic, space group P2(1)/c, a = 7.2300(5) Angstroms, b = 8.5511(6) Angstroms, c = 13.5361(10) Angstroms, beta = 100.035(1) degrees, V = 824.06(18), Z = 4. The structure consists of Am(3+) cations bound by iodate anions to form [Am(IO(3))(8)] units, where the local coordination environment around the americium centers is a distorted dodecahedron. There are three crystallographically unique iodate anions within the structure that bridge in both bidentate and tridentate fashions to form the overall three-dimensional structure. Repeated collection of X-ray diffraction data with time for a crystal of (243)Am(IO(3))(3) revealed an anisotropic expansion of the unit cell, presumably from self-irradiation damage, to generate values of a = 7.2159(7) Angstroms, b = 8.5847(8) Angstroms, c = 13.5715(13) Angstroms, beta = 99.492(4) degrees, V = 829.18(23) after approximately five months. The Am(IO(3))(3) crystals have also been characterized by Raman spectroscopy and the spectral results compared to those for Cm(IO(3))(3). Three strong Raman bands were observed for both compounds and correspond to the I-O symmetric stretching of the three crystallographically distinct iodate anions. The Raman profile suggests a lack of interionic vibrational coupling of the I-O stretching, while intraionic coupling provides symmetric and asymmetric components that correspond to each iodate site. Photoluminescence data for both Am(IO(3))(3) and Cm(IO(3))(3) are reported here for the first time. Assignments for the electronic levels of the actinide cations were based on these photoluminescence measurements and indicate the presence of vibronic coupling between electronic transitions and IO(3)(-) vibrational modes in both compounds.  相似文献   

17.
Na2[UO2(IO3)4(H2O)] has been synthesized under mild hydrothermal conditions. Its structure consists of Na+ cations and [UO2(IO3)4(H2O)](2-) anions. The [UO2(IO3)4(H2O)](2-) anions are formed from the coordination of a nearly linear uranyl, UO2(2+), cation by four monodentate IO(3-) anions and a coordinating water molecule to yield a pentagonal bipyramidal environment around the uranium center. The water molecules form intermolecular hydrogen bonds with the terminal oxo atoms of neighboring [UO2(IO3)4(H2O)](2-) anions to yield one-dimensional chains that extend down the b axis. There are two crystallographically unique iodate anions in the structure of Na2[UO2(IO3)4(H2O)]. One of these anions is aligned so that the lone-pair of electrons is also directed along the b axis. The overall structure is therefore polar, owing to the cooperative alignment of both the hydrogen bonds and the lone-pair of electrons on iodate. The polarity of the monoclinic space group C2 (a = 11.3810(12) A, b = 8.0547(8) A, c = 7.6515(8) A, beta = 90.102(2) degrees , Z = 2, T = 193 K) found for this compound is consistent with the structure. Second-harmonic generation of 532 nm light from a 1064 nm laser source yields a response of approximately 16x alpha-SiO2.  相似文献   

18.
The reaction of the molecular transition metal iodate, Cs[CrO(3)(IO(3))], with UO(3) under mild hydrothermal conditions provides access to a new low-dimensional, mixed-metal U(VI) compound, Cs(2)[(UO(2))(CrO(4))(IO(3))(2)] (1). The structure of 1 is quite unusual and consists of one-dimensional (1)(infinity)[(UO(2))(CrO(4))(IO(3))(2)](2-) ribbons separated by Cs(+) cations. These ribbons are formed from [UO(7)] pentagonal bipyramids that contain a uranyl core, [CrO(4)] tetrahedra, and both monodentate and bridging iodate anions. Crystallographic data: 1, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4 (T = 193 K).  相似文献   

19.
Yeh CY  Chiang YL  Lee GH  Peng SM 《Inorganic chemistry》2002,41(16):4096-4098
The one-electron oxidized linear pentanuclear nickel complexes [Ni(5)(tpda)(4)(H(2)O)(BF(4))](BF(4))(2) (1) and [Ni(5)(tpda)(4)(SO(3)CF(3))(2)](SO(3)CF(3)) (2) have been synthesized by reacting the neutral compound [Ni(5)(tpda)(4)Cl(2)] with the corresponding silver salts. These compounds have been characterized by various spectroscopic techniques. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 15.3022(1) A, b = 31.0705(3) A, c = 15.8109(2) A, beta = 92.2425(4) degrees, V = 7511.49(13) A(3), Z = 4, and compound 2 crystallizes in the monoclinic space group C2/c with a = 42.1894(7) A, b = 17.0770(3) A, c = 21.2117(4) A, beta = 102.5688(8) degrees, V = 14916.1(5) A(3), Z = 8. X-ray structural studies reveal an unsymmetrical Ni(5) unit for both compounds 1 and 2. Compounds 1 and 2 show stronger Ni-Ni interactions as compared to those of the neutral compounds.  相似文献   

20.
A homologous series of dinuclear compounds with the bridging ligand 2-(2-pyridyl)-1,8-naphthyridine (pynp) has been prepared and characterized by X-ray crystallographic and spectroscopic methods. [Mo(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x 3CH(3)CN (1) crystallizes in the monoclinic space group P2(1)/c with a = 15.134(5) A, b = 14.301(6) A, c = 19.990(6) A, beta = 108.06(2) degrees, V = 4113(3) A(3), and Z = 4. [Ru(2)(O(2)CCH(3))(2)(pynp)(2)][PF(6)](2) x 2CH(3)OH (2) crystallizes in the monoclinic space group C2/c with a = 14.2228(7) A, b = 20.3204(9) A, c = 14.1022(7) A, beta = 95.144(1) degrees, V = 4059.3(3) A(3), and Z = 4. [Rh(2)(O(2)CCH(3))(2)(pynp)(2)][BF(4)](2) x C(7)H(8) (3) crystallizes in the monoclinic space group C2/c with a = 13.409(2) A, b = 21.670(3) A, c = 13.726(2) A, beta = 94.865(2) degrees, V = 3973.9(8) A(3), and Z = 4. A minor product, [Rh(2)(O(2)CCH(3))(2)(pynp)(2)(CH(3)CN)(2)][BF(4)][PF(6)] x 2CH(3)CN (4), was isolated from the mother liquor after crystals of 3 had been harvested; this compound crystallizes in the triclinic space group, P1 with a = 12.535(3) A, b = 13.116(3) A, c = 13.785(3) A, alpha = 82.52(3) degrees, beta = 77.70(3) degrees, gamma = 85.76(3) degrees, V = 2193.0(8) A(3), and Z = 2. Compounds 1-3 constitute a convenient series for probing the influence of the electronic configuration on the extent of mixing of the M-M orbitals with the pi system of the pynp ligand. Single point energy calculations performed on 1-3 at the B3LYP level of theory lend insight into the bonding in these compounds and allow for correlations to be made with electronic spectral data. Although purely qualitative in nature, the values for normalized change in orbital energies (NCOE) of the frontier orbitals before and after reduction are in agreement with the observed differences in reduction potentials as determined by cyclic voltammetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号