首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Recently steplength parameters have been used in linear multigrid methods. In this paper we give a theoretical analysis of the effects of steplength optimization in a rather general framework which covers two different implementations of steplength optimization in standard multigrid methods.  相似文献   

2.
Multi-grid methods for Hamilton-Jacobi-Bellman equations   总被引:1,自引:0,他引:1  
Summary In this paper we develop multi-grid algorithms for the numerical solution of Hamilton-Jacobi-Bellman equations. The proposed schemes result from a combination of standard multi-grid techniques and the iterative methods used by Lions and mercier in [11]. A convergence result is given and the efficiency of the algorithms is illustrated by some numerical examples.  相似文献   

3.
Summary In the present paper we introduce transforming iterations, an approach to construct smoothers for indefinite systems. This turns out to be a convenient tool to classify several well-known smoothing iterations for Stokes and Navier-Stokes equations and to predict their convergence behaviour, epecially in the case of high Reynolds-numbers. Using this approach, we are able to construct a new smoother for the Navier-Stokes equations, based on incomplete LU-decompositions, yielding a highly effective and robust multi-grid method. Besides some qualitative theoretical convergence results, we give large numerical comparisons and tests for the Stokes as well as for the Navier-Stokes equations. For a general convergence theory we refer to [29].This work was supported in part by Deutsche Forschungsgemeinschaft  相似文献   

4.
Summary The slow viscous flow past a spatial body with corners and edges is investigated mathematically and numerically by means of a boundary element method. For the resulting algebraic system a multigrid solver is designed and analyzed. Due to an improved bound on the rate of convergence it proves to be preferable to that introduced earlier for related problems. A numerical example illustrates some of the proposed methods.  相似文献   

5.
Summary In the present paper we give a convergence theory for multi-grid methods with transforming smoothers as introduced in [31] applied to a general system of partial differential equations. The theory follows Hackbusch's approach for scalar pde and allows a convergence proof for some well-known multi-grid methods for Stokes- and Navier-Stokes equations as DGS by Brandt-Dinar, [5], TILU from [31] and the SIMPLE-methods by Patankar-Spalding, [23].This work was supported in part by Deutsche Forschungsgemeinschaft  相似文献   

6.
Summary The computation of the homogenized coefficients involves the solution of a minimum problem for a quadratic functional. The use of conforming finite elements provides estimates from above. In this paper we prove that, under realistic assumptions, the use of linear non-conforming finite elements provides estimates from below. Hence, a-posteriori error estimates for the homogenized coefficients can be obtained.  相似文献   

7.
Summary The numerical solution of the linear equations arising from Morley's nonconforming displacement method is studied. A suitable preconditioning for the conjugate gradient method is described. Furthermore, the nonconformity of the discretization necessitates some non-standard ingredients of multigrid algorithms.  相似文献   

8.
Summary In this paper, discrete analogues of variational inequalities (V.I.) and quasi-variational inequalities (Q.V.I.), encountered in stochastic control and mathematical physics, are discussed.It is shown that those discrete V.I.'s and Q.V.I.'s can be written in the fixed point formx=Tx such that eitherT or some power ofT is a contraction. This leads to globally convergent iterative methods for the solution of discrete V.I.'s and Q.V.I.'s, which are very suitable for implementation on parallel computers with single-instruction, multiple-data architecture, particularly on massively parallel processors (M.P.P.'s).This research is in part supported by the U.S. Department of Energy, Engineering Research Program, under Contract No. DE-AS05-84EH13145  相似文献   

9.
Stabilized mixed methods for the Stokes problem   总被引:7,自引:0,他引:7  
Summary The solution of the Stokes problem is approximated by three stabilized mixed methods, one due to Hughes, Balestra, and Franca and the other two being variants of this procedure. In each case the bilinear form associated with the saddle-point problem of the standard mixed formulation is modified to become coercive over the finite element space. Error estimates are derived for each procedure.Dedicated to Ivo Babuka on the occasion of his sixtieth birthday  相似文献   

10.
Summary The Neumann problem for a second order elliptic equation with self-adjoint operator is considered, the unique solution of which is determined from projection onto unity. Two variational formulations of this problem are studied, which have a unique solution in the whole space. Discretization is done via the finite element method based on the Ritz process, and it is proved that the discrete solutions converge to one of the solutions of the continuous problem. Comparison of the two methods is done.  相似文献   

11.
Summary The object of this paper is to study some boundary element methods for the heat equation. Two approaches are considered. The first, based on the heat potential, has been studied numerically by previous authors. Here the convergence analysis in one space dimension is presented. In the second approach, the heat equation is first descretized in time and the resulting elliptic problem is put in the boundary formulation. A straight forward implicit method and Crank-Nicolson's method are thus studied. Again convergence in one space dimension is proved.  相似文献   

12.
Summary We derive and analyze the hierarchical basis-multigrid method for solving discretizations of self-adjoint, elliptic boundary value problems using piecewise linear triangular finite elements. The method is analyzed as a block symmetric Gauß-Seidel iteration with inner iterations, but it is strongly related to 2-level methods, to the standard multigridV-cycle, and to earlier Jacobi-like hierarchical basis methods. The method is very robust, and has a nearly optimal convergence rate and work estimate. It is especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.  相似文献   

13.
Summary In the well-known Volterra-Lotka model concerning two competing species with diffusion, the densities of the species are governed by a coupled system of reaction diffusion equations. The aim of this paper is to present an iterative scheme for the steady state solutions of a finite difference system which corresponds to the coupled nonlinear boundary value problems. This iterative scheme is based on the method of upper-lower solutions which leads to two monotone sequences from some uncoupled linear systems. It is shown that each of the two sequences converges to a nontrivial solution of the discrete equations. The model under consideration may have one, two or three nonzero solutions and each of these solutions can be computed by a suitable choice of initial iteration. Numerical results are given for these solutions under both the Dirichlet boundary condition and the mixed type boundary condition.  相似文献   

14.
Summary This paper presents an existence-comparison theorem and an iterative method for a nonlinear finite difference system which corresponds to a class of semilinear parabolic and elliptic boundary-value problems. The basic idea of the iterative method for the computation of numerical solutions is the monotone approach which involves the notion of upper and lower solutions and the construction of monotone sequences from a suitable linear discrete system. Using upper and lower solutions as two distinct initial iterations, two monotone sequences from a suitable linear system are constructed. It is shown that these two sequences converge monotonically from above and below, respectively, to a unique solution of the nonlinear discrete equations. This formulation leads to a well-posed problem for the nonlinear discrete system. Applications are given to several models arising from physical, chemical and biological systems. Numerical results are given to some of these models including a discussion on the rate of convergence of the monotone sequences.  相似文献   

15.
Summary In this paper, we study a special multigrid method for solving large linear systems which arise from discretizing biharmonic problems by the Hsieh-Clough-Tocher,C 1 macro finite elements or several otherC 1 finite elements. Since the multipleC 1 finite element spaces considered are not nested, the nodal interpolation operator is used to transfer functions between consecutive levels in the multigrid method. This method converges with the optimal computational order.  相似文献   

16.
A relaxation procedure for domain decomposition methods using finite elements   总被引:11,自引:0,他引:11  
Summary We present the convergence analysis of a new domain decomposition technique for finite element approximations. This technique was introduced in [11] and is based on an iterative procedure among subdomains in which transmission conditions at interfaces are taken into account partly in one subdomain and partly in its adjacent. No global preconditioner is needed in the practice, but simply single-domain finite element solvers are required. An optimal strategy for an automatic selection of a relaxation parameter to be used at interface subdomains is indicated. Applications are given to both elliptic equations and incompressible Stokes equations.  相似文献   

17.
Summary We study direct and iterative domain imbedding methods for the Stokes equations on certain non-rectangular domains in two space dimensions. We analyze a continuous analog of numerical domain imbedding for bounded, smooth domains, and give an example of a simple numerical algorithm suggested by the continuous analysis. This algorithms is applicable for simply connected domains which can be covered by rectangular grids, with uniformly spaced grid lines in at least one coordinate direction. We also discuss a related FFT-based fast solver for Stokes problems with physical boundary conditions on rectangles, and present some numerical results.  相似文献   

18.
Summary The paper deals with some finite element approximation of stationary heat conduction problems on regions which can be partitioned into rectangular subregions. By a special superelement-technique employing fast elimination of the inner nodal parameters, the original finite element problem is reduced to a smaller problem, which is only connected with the nodes on the boundary of the superelements. To solve the reduced system of finite element equations, an efficient iterative algorithm is proposed. This algorithm is based either on the conjugate gradient method or the Tshebysheff method, using a special matrix by vector multiplication procedure. The explicit form of the matrix is not used. The presented numerical method is asymptotically optimal with respect to the memory requirement as well as to the operation count.  相似文献   

19.
A family of higher order mixed finite element methods for plane elasticity   总被引:8,自引:0,他引:8  
Summary The Dirichler problem for the equations of plane elasticity is approximated by a mixed finite element method using a new family of composite finite elements having properties analogous to those possessed by the Raviart-Thomas mixed finite elements for a scalar, second-order elliptic equation. Estimates of optimal order and minimal regularity are derived for the errors in the displacement vector and the stress tensor inL 2(), and optimal order negative norm estimates are obtained inH s () for a range ofs depending on the index of the finite element space. An optimal order estimate inL () for the displacement error is given. Also, a quasioptimal estimate is derived in an appropriate space. All estimates are valid uniformly with respect to the compressibility and apply in the incompressible case. The formulation of the elements is presented in detail.This work was performed while Professor Arnold was a NATO Postdoctoral Fellow  相似文献   

20.
Summary Spectral methods employ global polynomials for approximation. Hence they give very accurate approximations for smooth solutions. Unfortunately, for Dirichlet problems the matrices involved are dense and have condition numbers growing asO(N 4) for polynomials of degree N in each variable. We propose a new spectral method for the Helmholtz equation with a symmetric and sparse matrix whose condition number grows only asO(N 2). Certain algebraic spectral multigrid methods can be efficiently used for solving the resulting system. Numerical results are presented which show that we have probably found the most effective solver for spectral systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号