首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular dynamics (MD) simulations were performed on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (mppy+TFSI-) from 303 to 393 K to improve understanding of the structure and ion transport of this ionic liquid. The density, ion self-diffusion coefficients, conductivity, and viscosity of mppy+TFSI- predicted from MD simulations are in good agreement with experimental measurements. The time-dependent shear modulus of the ionic liquids was calculated and compared with that for nonionic liquids. On average each mppy+ cation was found to be coordinated by four TFSI- anions. The angular distributions of N(TFSI-)-N(mppy+)-N(TFSI-) and N(mppy+)-N(TFSI-)-N(mppy+) exhibit a maximum at 80-90 degrees and a second maximum at 180 degrees . Correlation of ion motion was found to lower ionic conductivity by approximately one-third from the expected value based upon ion self-diffusion coefficients. Rotational motion of the cation and anion are anisotropic with the degree of anisotropy increasing with decreasing temperature. Electrostatic interactions are responsible for slowing down the dynamics of the ionic liquid by more than an order of magnitude and a dramatic decrease of the time-dependent shear modulus.  相似文献   

2.
According to the data of IR spectroscopy, dielectrometry, and HF/6-31G**, B3LYP/6-311G** quantum chemical calculations bis(trifluoromethanesulfonyl)imide (CF3SO2)2NH in nonpolar medium (CCl4) exists as an H-complex formed by its molecules in two tautomeric (NH and OH) forms. In a polar medium (CH2C12) linear chain polyassociates with a bifurcate hydrogen bond are formed similar to those existing in the crystal. In the presence of protophilic solvents ion pairs consisting of the protonated molecule of the base and dimeric anion of bis(trifluoromethanesulfonyl)imide are formed.  相似文献   

3.
Electrochemical properties of LiNiO2|Li and LiNiO2|graphite cells were analysed in ionic liquid electrolyte [Li+][MePrPyrr+][NTf2-] (based on N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulphonyl)imide, [MePrPyrr+][NTf2-]) using impedance spectroscopy and galvanostatic techniques. The ionic liquid is incapable of protective solid electrolyte interface (SEI) formation on metallic lithium or lithiated graphite. However, after addition of VC, the protective coating is formed, facilitating a proper work of the Li-ion cell. Scanning electron microscopy images of pristine electrodes and those taken after electrochemical cycling showed changes which may be interpreted as a result of SEI formation. The charging/discharging capacity of the LiNiO2 cathode is between 195 and 170 mAh g−1, depending on the rate. The charging/discharging efficiency of the graphite anode drops after 50 cycles from an initial value of ca. 360 mAh g−1 to stabilise at 340 mAh g−1. The replacement of a classical electrolyte in molecular liquids (cyclic carbonates) with an electrolyte based on the MePrPyrrNTf2 ionic liquid highly increases in the cathode/electrolyte non-flammability.  相似文献   

4.
The solvation structure of the lithium ion in room-temperature ionic liquids 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI(+)TFSI(-)) and N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP(+0TFSI(-)) has been studied by Raman spectroscopy and DFT calculations. Raman spectra of EMI(+)TFSI(-) and BMP(+)TFSI(-) containing Li(+)TFSI(-) over the range 0.144-0.589 and 0.076-0.633 mol dm(-3), respectively, were measured at 298 K. A strong 744 cm-1 band of the free TFSI(-) ion in the bulk weakens with increasing concentration of the lithium ion, and it revealed by analyzing the intensity decrease that the two TFSI(-) ions bind to the metal ion. The lithium ion may be four-coordinated through the O atoms of two bidentate TFSI(-) ions. It has been established in our previous work that the TFSI(-) ion involves two conformers of C(1) (cis) and C(2) (trans) symmetries in equilibrium, and the dipole moment of the C(1) conformer is significantly larger than that of the C(2) conformer. On the basis of these facts, the geometries and SCF energies of possible solvate ion clusters [Li(C(1)-TFSI(-))(2)](-), [Li(C(1)-TFSI(-))(C(2)-TFSI(-))](-), and [Li(C(2)-TFSI(-))(2)](-) were examined using the theoretical DFT calculations. It is concluded that the C(1) conformer is more preferred to the C(2) conformer in the vicinity of the lithium ion.  相似文献   

5.
Molecular dynamics simulations have been performed to investigate the structure and dynamics of the ionic liquid, 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C(4)mim][Tf(2)N]) in the temperature range of 283-460 K. Extensive analysis was carried out to characterize a number of structural and dynamic features. Transport properties were computed using a variety of equilibrium methods that employed the Green-Kubo and Einstein formulations. Nonequilibrium techniques were also used. In general, different methods mostly yielded consistent results, although some differences were observed. Computed self-diffusivities and ionic conductivities tended to be slightly lower than experimental values, while computed viscosities were significantly higher than experiment. Computed thermal conductivities agreed reasonably well with experimental data. Despite these discrepancies, the simulations capture the experimental temperature-dependent trends for all these transport properties. Single ion dynamics were studied by examining diffusional anisotropy, the self-part of the van Hove function, non-Gaussian parameters, and incoherent intermediate scattering functions. It is found that cations diffuse faster than anions and are more dynamically heterogeneous. A clear anisotropy is revealed in cation displacement, with the motion normal to the imidazolium ring plane being the most hindered and the motion along the alkyl chain in the plane of the ring being the most facile. Cations structurally relax faster than anions but they rotationally relax slower than anions. There is a pronounced temperature dependence to the rotational anisotropy of the cations, but only a weak temperature dependence for the anions. The ionic conductivity deviates from the Nernst-Einstein relation due to the correlated motion of cations and anions. The results suggest that the dynamical behavior of this and related ionic liquids is extremely complex and consists of many different modes with widely varying timescales, making the prediction of dynamical trends extremely difficult.  相似文献   

6.
We measured the far- and mid-infrared spectra of three ionic liquids having bis(trifluoromethanesulfonyl)imide anions and three different cations of the families of pyrrolidinium and ammmonium ions. The molecular vibrations of the individual ions were calculated by means of DFT theory at the B3LYP/6-31G** level: we found good agreement between the experimental and the computed frequencies. The infrared lines are ascribable to molecular vibrations of the single ions, suggesting an extremely weak interaction between anions and cations. The spectral lines found experimentally between 760 and 1050 cm−1 are fingerprints for different cations. The comparison with the calculated frequencies allows the assignment of the experimental spectral lines to specific molecular vibrations of anions and for the first time of the specific cations of the measured ionic liquids.  相似文献   

7.
Thermodynamics, structure, and dynamics of an ionic liquid based on a quaternary ammonium salt with ether side chain, namely, N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM2E TFSI, are investigated by molecular dynamics (MD) simulations. Average density and configurational energy of simulated MOENM2E TFSI are interpreted with models that take into account empirical ionic volumes. A throughout comparison of the equilibrium structure of MOENM2E TFSI with previous results for the more common ionic liquids based on imidazolium cations is provided. Several time correlation functions are used to reveal the microscopic dynamics of MOENM2E TFSI. Structural relaxation is discussed by the calculation of simultaneous space-time correlation functions. Temperature effects on transport coefficients (diffusion, conductivity, and viscosity) are investigated. The ratio between the actual conductivity and the estimate from ionic diffusion by the Nernst-Einstein equation indicates that correlated motion of neighboring ions in MOENM2E TFSI is similar to imidazolium ionic liquids. In line with experiment, Walden plot of conductivity and viscosity indicates that simulated MOENM2E TFSI should be classified as a poor ionic liquid.  相似文献   

8.
The first homoleptic alkaline earth bis(trifluoromethanesulfonyl)imide (Tf2N) complexes [mppyr]2[Ca(Tf2N)4], [mppyr]2[Sr(Tf2N)4], and [mppyr][Ba(Tf2N)3] were crystallized from a solution of the respective alkaline earth bis(trifluoromethanesulfonyl)imide and the ionic liquid [mppyr][Tf2N] (mppyr = 1,1-N-methyl-N-propylpyrrolidinium). In the calcium and strontium compounds, the alkaline earth metal (AE) is coordinated by four bidentately chelating Tf2N ligands to form isolated (distorted) square antiprismatic [AE(Tf2N)4]2- complexes which are separated by N-methyl-N-propylpyrrolidinium cations. In contrast, the barium compound, [mppyr][Ba(Tf2N)3], forms an extended structure. Here the alkaline earth cation is surrounded by six oxygen atoms belonging to three Tf2N- anions which coordinate in a bidentate chelating fashion. Three further oxygen atoms of the same ligands are linking the Ba2+ cations to infinite (infinity)(1)[Ba(Tf2N)3] chains.  相似文献   

9.
The preparation of a series of bis(trifluoromethanesulfonyl) imide salts of various metals was effected in good yields, under clean, mild and anhydrous conditions, by using a simple electrochemical methodology.  相似文献   

10.
A preliminary Raman investigation of the ionic liquid N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR(13)TFSI) and its 2/1 complex with the lithium salt LiN(SO(2)CF(3))(2) is reported. The study was performed over a temperature range extending from -100 to +60 degrees C, i.e., with PYR(13)TFSI in the crystalline and melt states. For comparison purposes, the study was extended to PYR(13)I, which is the precursor used in the synthesis of PYR(13)TFSI.  相似文献   

11.
To enhance the applicability of the nuclear analytical technique in the field of industry and the environment, the inorganic elemental content of the bottom ash from a municipal solid waste incinerator was determined by instrumental neutron activation analysis. Bottom ash samples were monthly collected from an incinerator located at a metropolitan city in Korea, strained through a 5 mm sieve, dried by an oven and pulverized by an agate mortar. The samples were irradiated at the NAA #1 irradiation hole (thermal neutron flux: 2.92·1013 n·cm−2·s−1) in the HANARO research reactor of the Korea Atomic Energy Research Institute and the irradiated samples were measured by a HP Ge gamma-ray spectrometer. Thirty-three elements including As, Cr, Cu, Fe, Mn, Sb and Zn were analyzed by an absolute method. The quality control was conducted by a simultaneous analysis with NIST standard reference materials. The average concentrations of the major elements such as Ca, Fe, Al, Na, Mg, K and Ti measured in the sample were 19.9%, 4.85%, 3.79%, 2.11%, 1.84%, 1.22% and 1.02%, respectively. In addition, the concentrations of the hazardous metals like Zn, Cu, Cr, Sb and As were 0.77%, 0.31%, 729 mg·kg−1, 116 mg·kg−1 and 22.2 mg·kg−1, respectively.  相似文献   

12.
The structure of bis(trifluoromethanesulfonyl) imide (TFSI-) in the liquid state has been studied by means of Raman spectroscopy and DFT calculations. Raman spectra of 1-ethyl-3-methylimidazolium (EMI+) TFSI- show relatively strong bands arising from TFSI- at about 398 and 407 cm(-1). Interestingly, the 407 cm(-1) band, relative to the 398 cm(-1) one, is appreciably intensified with raising temperature, suggesting that an equilibrium is established between TFSI- conformers in the liquid state. According to DFT calculations followed by normal frequency analyses, two conformers of C2 and C1 symmetry, respectively, constitute global and local minima, with an energy difference 2.2-3.3 kJ mol(-1). The wagging omega-SO2 vibration appears at 396 and 430 cm(-1) for the C1 conformer and at 387 and 402 cm(-1) for the C2 one. Observed Raman spectra over the range 380-440 cm(-1) were deconvoluted to extract intrinsic bands of TFSI- conformers, and the enthalpy of conformational change from C2 to C1 was evaluated. The enthalpy value is in good agreement with that obtained by theoretical calculations. We thus conclude that a conformational equilibrium is established between the C1 and C2 conformers of TFSI- in the liquid EMI+TFSI-, and the C2 conformer is more favorable than the C1 one.  相似文献   

13.
Crystal structures of two examples of an important class of ionic liquids, 1,3-dimethylimidazolium and 1,2,3-triethylimidazolium bis(trifluoromethanesulfonyl)imide have been characterized by single crystal X-ray diffraction. The anion in the 1,3-dimethylimidazolium example (mp 22 degrees C), adopts an unusual cis-geometry constrained by bifurcated cation-anion C-H. . .O hydrogen-bonds from the imidazolium cation to the anion resulting in the formation of fluorous layers within the solid-state structure. In contrast, in the 1,2,3-triethylimidazolium salt (mp 57 degrees C), the ions are discretely packed with only weak C-H. . .O contacts between the ions close to the van der Waals separation distances, and with the anion adopting the twisted conformation observed for all other examples from the limited set of organic bis(trifluoromethanesulfonyl)imide crystal structures. The structures are discussed in terms of the favorable physical properties that bis(trifluoromethanesulfonyl)imide anions impart in ionic liquids.  相似文献   

14.
A free standing polymer electrolytes films, containing poly(glycidyl methacrylate) (PGMA) as the polymer host, lithium perchlorate (LiClO4), and ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide [Bmim][TFSI] as a plasticizer was successfully prepared via the solution casting method. The XRD analysis revealed the amorphous nature of the electrolyte. ATR-FTIR and thermal studies confirmed the interaction and complexation between the polymer host and the ionic liquid. The maximum ionic conductivity of the solid polymer electrolyte was found at 2.56 × 10–5 S cm–1 by the addition of 60 wt % [Bmim][TFSI] at room temperature and increased up to 3.19 × 10–4 S cm–1 at 373 K, as well as exhibited a transition of temperature dependence of conductivity: Arrhenius-like behavior at low and high temperatures.  相似文献   

15.
Journal of Solid State Electrochemistry - A method of high-heating-rate thermal reduction is used to produce porous graphene nanosheets (PGNSs). This material is characterized by a unique holey...  相似文献   

16.
A systematic investigation of the major impurities content as well as of their effect on the electrochemical behavior of synthesized N‐butyl‐N‐methylpyrrolidinium (Py1.4), N‐(2‐methoxyethyl)‐N‐methylpyrrolidinium (Py1.102) and 1‐butyl‐3‐methylimidazolium (bmim) bis(trifluoromethanesulfonyl)imide has been carried out and the efficacy of an optimized multistep purification protocol for obtaining ILs suitable for electrochemical applications has been verified.  相似文献   

17.
A new isoquinolinium ionic liquid (IL) has been synthesised as a continuation of our work with quinolinium-based ionic liquids (ILs). The work includes specific basic characterization of synthesized compounds: N-isobutylquinolinium bromide, [BiQuin][Br] and N-isobutylquinolinium bis{(trifluoromethyl)sulfonyl}imide [BiQuin][NTf2] by NMR spectra, elementary analysis and water content. The basic thermal properties of the pure [BiQuin][NTf2], i.e. melting and glass-transition temperatures, the enthalpy of fusion as well as heat capacity at glass transition have been measured using a differential scanning microcalorimetry technique (DSC). Densities and viscosities were determined as a function of temperature. The temperature-composition phase diagrams of 8 binary mixtures composed of organic solvent dissolved in the IL: {[BiQuin][NTf2] + aromatic hydrocarbon (benzene, or toluene, or ethylbenzene, or n-propylbenzene), or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol)} were measured at ambient pressure. A dynamic method was used over a broad range of mole fraction and temperature from (270 to 320) K. For all the binary systems with benzene and alkylbenzenes, the eutectic diagrams were observed with an immiscibility gap in the liquid phase existing at low mole fraction of the IL with a very high upper critical solution temperature (UCST). For mixtures with alcohols, complete miscibility was observed for 1-butanol and also an immiscibility gap with UCST in the liquid phase for the remaining alcohols. The typical dependence was observed that with increasing chain length of an alcohol, the solubility decreases. The well-known NRTL equation was used to correlate experimental (solid + liquid), SLE and (liquid + liquid), LLE phase equilibrium data sets.  相似文献   

18.
The N‐(trimethylsilyl)bis(trifluoromethanesulfonyl)imide‐catalyzed (Me3SiNTf2‐catalyzed) group transfer polymerization (GTP) of methyl methacrylate (MMA) has been studied for synthesizing stereospecific star‐shaped poly(methyl methacrylate)s (PMMAs). The catalytic property of Me3SiNTf2 for the GTP of MMA using 1‐methoxy‐1‐trimethylsilyloxy‐2‐methyl‐propene as the initiator was confirmed by a kinetic investigation and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry measurement. The initiating efficiency (f) of Me3SiNTf2 was 0.94–1.00, which was estimated by the value of Mn(calcd)/Mn(SEC). The Me3SiNTf2‐catalyzed GTP of MMA was carried out using initiators possessing three, four, and six MTS groups (MTS3, MTS4, and MTS6, respectively) under the condition of [MMA]0/[MTS3, MTS4, or MTS6]0 = 120 at ?55 °C. All the obtained PMMAs exhibited unimodal and narrow molecular weight distributions as Mw/Mns = 1.03–1.04 and the Mw(MALS)s of the 3‐, 4‐, and 6‐armed star‐shaped PMMAs (PMMA3, PMMA4, and PMMA6, respectively) were 12.9, 12.9, and 13.4 kgmol?1, respectively, which fairly agreed with the calculated Mw(calcd) values. The syndiotacticities, rrs, of PMMA3, PMMA4, and PMMA6 were in the range of 87–89%. The stereoblock synthesis of PMMA3, PMMA4, and PMMA6 was performed by the first and second polymerizations at ?55 and 45 °C; the rrs of the first and second PMMA blocks were 87.0, 87.0, and 86.0% and 65.0, 65.0, and 64.0%, respectively. The glass transition temperatures (Tgs) were 118.1, 115.8, and 111.5 °C for the respective syndiotactic‐rich PMMA3, PMMA4, and PMMA6 and 111.5, 109.7, and 107.6 °C for the respective stereoblock ones. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
This work reveals the performance of a trihexyl(tetradecyl)phosphonium bis(trifluoromethanesulfonyl)amide ([P6,6,6,14][NTf2]) ionic liquid (IL) conversion coating upon AZ91D. Such conversion coatings represent a novel avenue for chromate replacement. An optimization of coating performance was pursued by careful alloy pretreatment to generate a surface on which the coating performs best, as the AZ91 substrate is distinctly different from pure or dilute Mg alloys. The results reveal that a functional conversion coating can be achieved, retarding anodic dissolution kinetics, causing a significant decrease in corrosion rate. The coating efficacy is closely tied to the pretreatment performed, which dictates both the microstructural and electrochemical heterogeneity of the surface. The resulting coatings were found to contain MgxFx and phosphonium cation related components, the proportions of which were dependent on the pretreatment.  相似文献   

20.
ABSTRACT

Abraham model correlations are derived for describing gas-to-ionic liquid and water-to-ionic liquid partition coefficients from published experimental data for solutes dissolved in both N-triethyl(octyl)ammonium bis(fluorosulfonyl)imide and 1-butyl-3-methyl-pyrrolidinium bis(fluorosulfonyl)imide. Derived Abraham model correlations describe the observed partition coefficient data to within 0.13 log units. As part of the current study the existing equation coefficients for the N-triethyl(octyl)ammonium cation were updated and reported for the first time were equation coefficients for the bis(trifluorosulfonyl)imide anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号