首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Quantum manipulation of macroscopic mechanical systems is of great interest in both fundamental physics and ap- plications ranging from high-precision metrology to quantum information processing. For these purposes, a crucial step is to cool the mechanical system to its quantum ground state. In this review, we focus on the cavity optomechanical cooling, which exploits the cavity enhanced interaction between optical field and mechanical motion to reduce the thermal noise. Recent remarkable theoretical and experimental efforts in this field have taken a major step forward in preparing the mo- tional quantum ground state of mesoscopic mechanical systems. This review first describes the quantum theory of cavity optomechanical cooling, including quantum noise approach and covariance approach; then, the up-to-date experimental progresses are introduced. Finally, new cooling approaches are discussed along the directions of cooling in the strong coupling regime and cooling beyond the resolved sideband limit.  相似文献   

2.
We theoretically investigate optomechanical force sensing via precooling and quantum noise cancellation in two coupled cavity optomechanical systems.We show that force sensing based on the reduction of noise can be used to dramatically enhance the force sensing and that the precooling process can eifectively improve the quantum noise cancellation.Specifically,we examine the effect of optomechanical cooling and noise reduction on the spectral density of the noise of the force measurement;these processes can significantly enhance the performance of optomechanical force sensing,and setting up the system in the resolved sideband regime can lead to an optimization of the cooling processes in a hybrid system.Such a scheme serves as a promising platform for quantum back-action-evading measurements of the motion and a framework for an optomechanical force sensor.  相似文献   

3.
A pulsed cooling scheme for optomechanical systems is presented that is capable of cooling at much faster rates, shorter overall cooling times, and for a wider set of experimental scenarios than is possible by conventional methods. The proposed scheme can be implemented for both strongly and weakly coupled optomechanical systems in both weakly and highly dissipative cavities. We study analytically its underlying working mechanism, which is based on interferometric control of optomechanical interactions, and we demonstrate its efficiency with pulse sequences that are obtained by using methods from optimal control. The short time in which our scheme approaches the optomechanical ground state allows for a significant relaxation of current experimental constraints. Finally, the framework presented here can be used to create a rich variety of optomechanical interactions and hence offers a novel, readily available toolbox for fast optomechanical quantum control.  相似文献   

4.
We present a tutorial review on the topics related to current development in cavity optomechanics, with special emphasis on cavity optomechanical effects with ultracold gases, Bose-Einstein condensates, and spinor Bose-Einstein condensates. Topics including the quantum model and nonlinearity of the cavity optomechanics, the principles of optomechanical cooling, radiation-pressure-induced nonlinear states, the chaotic dynamics in a condensate-mirror-hybrid optomechanical setup, and the spin-mixing dynamics controlled by optical cavities are covered.  相似文献   

5.
Cavity optomechanical systems provide powerful platforms to manipulate photons and phonons, open potential applications for modern optical communications and precise measurements. With the refrigeration and ground-state cooling technologies, studies of cavity optomechanics are making significant progress towards the quantum regime including nonclassical state preparation, quantum state tomography, quantum information processing, and future quantum internet. With further research, it is found that abundant physical phenomena and important applications in both classical and quantum regimes appeal as they have a strong optomechanical nonlinearity, which essentially depends on the single-photon optomechanical coupling strength. Thus, engineering the optomechanical interactions and improving the single-photon optomechanical coupling strength become very important subjects. In this article, we first review several mechanisms,theoretically proposed for enhancing optomechanical coupling. Then, we review the experimental progresses on enhancing optomechanical coupling by optimizing its structure and fabrication process. Finally, we review how to use novel structures and materials to enhance the optomechanical coupling strength. The manipulations of the photons and phonons at the level of strong optomechanical coupling are also summarized.  相似文献   

6.
陈雪  刘晓威  张可烨  袁春华  张卫平 《物理学报》2015,64(16):164211-164211
腔光力学系统近年来迅猛发展, 在精密测量、量子传感等方面已展现出重要的应用价值. 特别是与微纳技术和冷原子技术结合后, 这一系统正发展成为研究量子测量与量子操控的理想平台. 本文首先综述腔光力学在量子测量, 尤其是量子测量基础理论研究方面的进展; 然后分析腔光力学系统中的量子测量原理; 最后介绍我们近来在这方面的研究进展, 并通过我们设计的一系列新颖的基于腔光力学系统的量子测量方案来具体展示该系统在量子测量、量子操控等方面的潜在应用.  相似文献   

7.
We investigate the generation of quantum correlations between mechanical modes and optical modes in an optomechanical system,using the rotating wave approximation.The system is composed of two Fabry-Perot cavities separated in space;each of the two cavities has a movable end-mirror.Our aim is the evaluation of entanglement between mechanical modes and optical modes,generated by correlations transfer from the squeezed light to the system,using Gaussian intrinsic entanglement as a witness of entanglement in continuous variables Gaussian states,and the quantification of the degree of mixedness of the Gaussian states using the purity.Then,we quantify nonclassical correlations between mechanical modes and optical modes even beyond entanglement by considering Gaussian geometric discord via the Hellinger distance.Indeed,entanglement,mixdness,and quantum discord are analyzed as a function of the parameters characterizing the system(thermal bath temperature,squeezing parameter,and optomechanical cooperativity).We find that,under thermal effect,when entanglement vanishes,purity and quantum discord remain nonzero.Remarkably,the Gaussian Hellinger discord is more robust than entanglement.The effects of the other parameters are discussed in detail.  相似文献   

8.
This paper gives a brief review of the basic physics of quantum optomechanics and provides an overview of some of its recent developments and current areas of focus. It first outlines the basic theory of cavity optomechanical cooling and gives a brief status report of the experimental state‐of‐the‐art. It then turns to the deep quantum regime of operation of optomechanical oscillators and covers selected aspects of quantum state preparation, control and characterization, including mechanical squeezing and pulsed optomechanics. This is followed by a discussion of the “bottom‐up” approach that exploits ultracold atomic samples instead of nanoscale systems. It concludes with an outlook that concentrates largely on the functionalization of quantum optomechanical systems and their promise in metrology applications.  相似文献   

9.
腔光力系统作为一种新型的混合量子系统,因其超强耦合度、低温超导条件下极低的噪声、较长的相干时间等优势而成为被广受关注的量子实验平台.本文简要介绍腔光力学及腔光力系统基本原理,对常见腔光力系统进行分类,详细介绍利用广义腔光力系统进行微波非经典量子态制备的相关进展,对其性能优势和待解决问题进行分析,最后总结相关应用场景并对未来的潜在应用领域进行了展望.  相似文献   

10.
The dominant hurdle to the operation of optomechanical systems in the quantum regime is the coupling of the vibrating element to a thermal reservoir via mechanical supports. Here we propose a scheme that uses an optical spring to replace the mechanical support. We show that the resolved-sideband regime of cooling can be reached in a configuration using a high-reflectivity disk mirror held by an optical tweezer as one of the end mirrors of a Fabry-Perot cavity. We find a final phonon occupation number of the trapped mirror n=0.56 for reasonable parameters, the limit being set by our approximations, and not any fundamental physics. This demonstrates the promise of dielectric disks attached to optical springs for the observation of quantum effects in macroscopic objects.  相似文献   

11.
In the unresolved sideband regime,we propose a scheme for cooling mechanical resonator close to its ground state in a three-cavity optomechanical system,where the auxiliary cavities are indirectly connected with the mechanical resonator through standard optomechanical subsystem.The standard optomechanical subsystem is driven by a strong pump laser field.With the help of the auxiliary cavities,the heating process is suppressed and the cooling process of the mechanical resonator is enhanced.More importantly,the average phonon number is much less than 1 in a larger range.This means that the mechanical resonator can be cooled down to its ground state.All these interesting features will significantly promote the physical realization of quantum effects in multi-cavity optomechanical systems.  相似文献   

12.
We theoretically present a scheme for nonreciprocal ground-state cooling in a double-cavity spinning optomechanical system which is consisted of an optomechanical resonator and a spinning optical harmonic resonator with directional driving. The optical Sagnac effect generated by the whispering-gallery cavity (WGC) rotation creates frequency difference between the WGC mode, we found that the mechanical resonator (MR) can be cooled to the ground state when the propagation direction of driving light is opposite to the spin direction of the WGC, but not from the other side, vice versa, so that the nonreciprocal cooling is achieved. By appropriately selecting the system parameters, the heating process can be completely suppressed due to the quantum interference effect. The proposed approach provides a platform for quantum manipulation of macroscopic mechanical devices beyond the resolved sideband limit.  相似文献   

13.
We experimentally demonstrate the high-sensitivity optical monitoring of a micromechanical resonator and its cooling by active control. Coating a low-loss mirror upon the resonator, we have built an optomechanical sensor based on a very high-finesse cavity (30 000). We have measured the thermal noise of the resonator with a quantum-limited sensitivity at the 10(-19) m/sqrt[Hz] level, and cooled the resonator down to 5 K by a cold-damping technique. Applications of our setup range from quantum optics experiments to the experimental demonstration of the quantum ground state of a macroscopic mechanical resonator.  相似文献   

14.
In this paper, we analyze the evolution of quantum coherence in a two-qubit system going through the amplitude damping channel. After they have gone through this channel many times, we analyze the systems with respect to the coherence of their output states. When only one subsystem goes through the channel, frozen coherence occurs if and only if this subsystem is incoherent and an auxiliary condition is satisfied for the other subsystem. When two subsystems go through this quantum channel, quantum coherence can be frozen if and only if the two subsystems are both incoherent. We also investigate the evolution of coherence for maximally incoherent-coherent states and derive an equation for the output states after one or two subsystems have gone through the amplitude damping channel.  相似文献   

15.
Optomechanical systems with strong coupling can be a powerful medium for quantum state engineering of the cavity modes. Here, we show that quantum state conversion between cavity modes of distinctively different wavelengths can be realized with high fidelity by adiabatically varying the effective optomechanical couplings. The conversion fidelity for gaussian states is derived by solving the Langevin equation in the adiabatic limit. Meanwhile, we also show that traveling photon pulses can be transmitted between different input and output channels with high fidelity and the output pulse can be engineered via the optomechanical couplings.  相似文献   

16.
Recently, cavity optomechanics has become a rapidly developing research field exploring the coupling between the optical field and mechanical oscillation. Cavity optomechanical systems were predicted to exhibit rich and nontrivial effects due to the nonlinear optomechanical interaction. However, most progress during the past years have focused on the linearization of the optomechanical interaction, which ignored the intrinsic nonlinear nature of the optomechanical coupling. Exploring nonlinear optomechanical interaction is of growing interest in both classical and quantum mechanisms, and nonlinear optomechanical interaction has emerged as an important new frontier in cavity optomechanics. It enables many applications ranging from single-photon sources to generation of nonclassical states. Here, we give a brief review of these developments and discuss some of the current challenges in this field.  相似文献   

17.
This study investigates the role of nonlinearity via optical parametric oscillator on the entropy production rate and quantum correlations in a hybrid optomechanical system. Specifically, the modified entropy production rate of an optical parametric oscillator placed in the optomechanical cavity is derived, which is well described by the two-mode Gaussian state. The irreversibility and quantum mutual information associated with the driving the system far from equilibrium are found to be controlled by the phase and strength of nonlinearity. This analysis shows that the system entropy flow, heating, or cooling, are determined by choosing the appropriate phase of the self-induced nonlinearity. It is further demonstrated that this effect persists for a reasonable range of cavity decay rate.  相似文献   

18.
机械振子的基态冷却是腔量子光力学中的基本问题之一.所谓的基态冷却就是让机械振子的稳态声子数小于1.本文通过光压涨落谱和稳态声子数研究双光腔光力系统(标准单光腔光力系统中引入第二个光腔,并与第一个光腔直接耦合)的基态冷却.首先得到系统的有效哈密顿量,然后给出朗之万方程和速率方程,最后分别给出空腔和原子腔的光压涨落谱、冷却率和稳态声子数.通过光压涨落谱、冷却率和稳态声子数表达式,重点讨论空腔时机械振子的基态冷却,发现当满足最佳参数条件(机械振子的冷却跃迁速率对应光压涨落谱的最大值,而加热跃迁速率对应光压涨落谱的最小值)时,机械振子可以被冷却到稳态声子数足够少.此外分析:当辅助腔内注入原子系综时,若参数选择恰当可能更利于基态冷却.  相似文献   

19.
Lian-Wu Yang 《中国物理 B》2021,30(12):120304-120304
Quantum coherence and discord are two kinds of manifestations of nonclassicality. By calculating the coherence and discord in the specific bipartite quantum systems, we show quantitative connections between the coherence and the discord in the bipartite quantum systems created from local systems with the help of incoherent operations. We show that the coherence bounds the dynamical discord, and under particular conditions of the initial quantum states, the coherence of single systems is equal to the dynamical discord. We extend these results to the multipartite quantum systems.  相似文献   

20.
We propose a scheme to suppress the laser phase noise without increasing the optomechanical single-photon coupling strength.In the scheme,the parametric amplification terms,created by Kerr and Duffing nonlinearities,can restrain laser phase noise and strengthen the effective optomechanical coupling,respectively.Interestingly,decreasing laser phase noise leads to increasing thermal noise,which is inhibited by bringing in a broadband-squeezed vacuum environment.To reflect the superiority of the scheme,we simulate quantum memory and stationary optomechanical entanglement as examples,and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed.Our method can pave the way for studying other quantum phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号