首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Fast electrons produced by a 10 ps, 160 J laser pulse through laser-compressed plastic cylinders are studied experimentally and numerically in the context of fast ignition. K(α)-emission images reveal a collimated or scattered electron beam depending on the initial density and the compression timing. A numerical transport model shows that implosion-driven electrical resistivity gradients induce strong magnetic fields able to guide the electrons. The good agreement with measured beam sizes provides the first experimental evidence for fast-electron magnetic collimation in laser-compressed matter.  相似文献   

2.
徐涵  卓红斌  杨晓虎  侯永  银燕  刘杰 《计算物理》2017,34(5):505-525
相对论激光等离子体相互作用以及所产生的带电粒子束在高密度等离子体中的输运行为非常重要.该物理问题的数值模拟研究仍面临技术挑战.本文介绍一种粒子/流体混合模拟方法.该方法中超热电子采用动力学方法描述,背景冷的稠密等离子体采用简化的流体方程描述,适合于超热电子密度远小于背景电子密度,超热电子能量远大于背景电子温度.我们的三维并行混合模拟程序HEETS的模拟结果表明:背景材料的电离和电阻率模型至关重要,将严重影响高能电子输运过程的模拟.  相似文献   

3.
用NaI闪烁体探测器组成的逃逸电子诊断系统和CdTe半导体探测阵列组成的快电子轫致辐射诊断系统,研究了一定等离子体密度条件下低杂波功率和等离子体电流对逃逸产生的影响以及一定低杂波功率下等离子体密度对逃逸电子产生的不同作用效果。根据实验数据计算了HT-7装置等离子体中电子逃逸的阈值电场和一定放电条件下电子逃逸的阈值能量。  相似文献   

4.
Measurements of the dc resistivity of surface-state electrons on liquid helium exposed to microwave radiation are reported. It is shown that the resonant microwave excitation of surface-state electrons is accompanied by a strong increase in their resistivity, which is opposite to the result expected from the previously used two-level model. We show that even a very small fraction of electrons excited to the first excited state and decaying back due to vapor-atom scattering strongly heat the electron system, causing a population of higher subbands. The calculated resistivity change is in good agreement with the observed data.  相似文献   

5.
Intense relativistic electron beams, produced by high-intensity short-pulse laser irradiation of a solid target, have many potential applications including fusion by fast ignition. Using a unique Fokker-Planck code, supported by analytic calculations, we show that fast electrons can be collimated into a beam even when the fast electron source is not strongly anisotropic, and we derive a condition for collimation to occur.  相似文献   

6.
Laser produced hot electron transport in an overdense plasma is studied by three-dimensional particle-in-cell simulations. Hot electron currents into the plasma generate neutralizing return currents in the cold plasma electrons, leading to a configuration which is unstable to electromagnetic Weibel and tearing instabilities. The resulting current filaments self-organize through a coalescence process finally settling into a single global current channel. The plasma return current experiences a strong anomalous resistivity due to diffusive flow of cold electrons in the magnetic perturbations. The resulting electrostatic field leads to an anomalously rapid stopping of fast MeV electrons (almost 3 orders of magnitude stronger than that through classical collisional effects).  相似文献   

7.
The reflection coefficient for normal incidence electrons may be deduced by using the technique of transverse electron focussing. It is shown how results from such experiments may be interpreted, using Soffer's surface scattering model, to deduce surface roughness for tungsten, cooper and silver.  相似文献   

8.
为了研究靶材料对快电子能量分布的影响,采用电子谱仪测量了飞秒激光与Cu和CH靶相互作用中在靶前和靶后产生的快电子能谱。结果显示,在靶前Cu和CH靶的快电子能谱相似,反应了快电子发射对靶材料的依赖性较弱;在靶后Cu和CH靶的快电子能谱具有明显的差异,说明电子的输运过程与靶材料密切相关。冷电子环流以及自生磁场是导致Cu靶快电子能谱"软化"的原因,而对于CH靶麦克斯韦分布的快电子能谱主要由碰撞机制决定。  相似文献   

9.
This paper theoretically investigates a novel application of high-temperature superconductors where the superconductor serves as the active component in a microwave or millimeter traveling-wave amplifier. A guided electromagnetic wave interacts with a dc superconducting electron current to set up charge-density gradients within the superconducting electron "plasma." The electromagnetic wave gradually extracts energy from the superconducting electrons by traveling in phase synchronism with these charge gradients. The interaction mechanism is similar to that of a conventional traveling-wave tube amplifier or oscillator. We have modeled the wave behavior of superconducting electrons using the London equations and a two-fluid approach. Our model includes dissipation within the superconductor, and it shows that traveling-wave devices may be possible using high-quality thin-film superconductors in which dissipation is kept low.  相似文献   

10.
Electronic transport through a one-dimensional quantum dot array is theoretically studied. In such a system both electron reservoirs of continuum states couple with the individual component quantum dots of the array arbitrarily. When there are some dangling quantum dots in the array outside the dot(s) contacting the leads, the electron tunneling through the quantum dot array is wholly forbidden if the electron energy is just equal to the molecular energy levels of the dangling quantum dots, which is called as antiresonance of electron tunneling. Accordingly, when the chemical potential of the reservoir electrons is aligned with the electron levels of all quantum dots, the linear conductance at zero temperature vanishes if there are odd number dangling quantum dots; Otherwise, it is equal to 2e2/h due to resonant tunneling if the total number of quantum dots in the array is odd. This odd–even parity is independent of the interdot and the lead–dot coupling strength.  相似文献   

11.
The influence of the extraction of charged particles on the conditions of sustaining and the characteristics of a glow discharge with oscillating electrons is considered. It is shown that there is some pressure-dependent optimum level for the extraction of ions at which the energy efficiency of the ion source reaches a maximum. Experimentally, it has been established that the sustaining of a discharge is adversely affected by the run-off of fast ionizing electrons from the discharge, whereas the emission of slow plasma electrons can facilitate the sustaining of the high-current variety of discharge and even lead to a stabilization of an unstable gas-discharge structure. It has been shown that due to the different character of the spatial distributions of fast and slow particles in discharges with electrons oscillating in a magnetic field it is possible to realize highly efficient electron emission without loss of discharge stability by extracting electrons from the near-anode region.  相似文献   

12.
13.
采用飞秒激光辐照铜靶,利用电子角分布仪和LiF热释光探测器测量了快电子发射的发散角.实验结果显示,快电子的发散角与激光入射角密切相关,随着激光入射角增加,快电子的发散角逐渐减小.在相同入射角条件下,加上预脉冲将导致快电子的发散角变小.这个结果为获取较小发散角的快电子束提供了实验参考.  相似文献   

14.
We investigate nuclear spin effects in a two-dimensional electron gas in the quantum Hall regime modeled by a weakly coupled array of interacting quantum wires. We show that the presence of hyperfine interaction between electron and nuclear spins in such wires can induce a phase transition, ordering electrons and nuclear spins into a helix in each wire. Electron-electron interaction effects, pronounced within the one-dimensional stripes, boost the transition temperature up to tens to hundreds of millikelvins in GaAs. We predict specific experimental signatures of the existence of nuclear spin order, for instance for the resistivity of the system at transitions between different quantum Hall plateaus.  相似文献   

15.
This paper presents an investigation into the fields radiated into air by ultrasonic phased arrays under transient excitation. In particular, it includes a theoretical prediction of spatial variations in amplitude throughout the both the near-field and far-field of such arrays. The approach has been used to predict the result of phasing to produce a focus in air, which can be seen to be particularly effective in the near-field of the array. Interesting features are observed, which are then described in terms of the performance of both individual elements and the resulting array. It is shown how some elements of design can be used to improve performance in focussing. The predictions are compared to the results of experiments in air using electrostatic arrays, where good focussing could be achieved provided the appropriate design principles were followed. The approach has been developed specifically for use in air, but the results would also hold for modelling in certain medical arrays where a focussing requirement might be needed close to the array itself.  相似文献   

16.
New understanding of mechanism of the runaway electrons beam generation in gases is presented. It is shown that the Townsend mechanism of the avalanche electron multiplication is valid even for the strong electric fields when the electron ionization friction on gas may be neglected. A non-local criterion for a runaway electron generation is proposed. This criterion results in the universal two-valued dependence of critical voltage U cr on pd for a certain gas (p is a pressure, d is an interelectrode distance). This dependence subdivides a plane (U cr , pd) onto the area of the efficient electron multiplication and the area where the electrons leave the gas gap without multiplication. On the basis of this dependence analogs of Paschen’s curves are constructed, which contain an additional new upper branch. This brunch demarcates the area of discharge and the area of e-beam. The mechanism of the formation of the recently created atomospheric pressure subnanosecond e-beams is discussed. It is shown that the beam of the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the anode. In this case a basic pulse of the electron beam is formed according to the non-local criterion of the runaway electrons generation. The role of the discharge gap preionization by the fast electrons, emitted from the plasma non-uniformities on the cathode, as well as a propagation of an electron multiplication wave from cathode to anode in a dense gas are considered.  相似文献   

17.
A mesoscopic spin valve is used to determine the dynamic spin polarization of electrons tunneling out of and into ferromagnetic (FM) transition metals at finite voltages. The dynamic polarization of electrons tunneling out of the FM slowly decreases with increasing bias but drops faster and even inverts with voltage when electrons tunnel into it. A free-electron model shows that in the former case electrons originate near the Fermi level of the FM with large polarization whereas in the latter, electrons tunnel into hot electron states for which the polarization is significantly reduced. The change in sign is ascribed to the matching of the electron wave function inside and outside the tunnel barrier.  相似文献   

18.
We present a method for reading out the spin state of electrons in a quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on the in-plane magnetic field.  相似文献   

19.
A comprehensive study is undertaken of angular distributions of electron knock-out from atomic targets by fast electrons with a small transfer of momentum. The general expressions for the parameters of the triple differential cross-section of impact ionization in the optical limit are derived. The calculated parameters are compared with those of the angular distribution of electrons ejected from an atom in the process of photoionization. In these processes, when the multipole transitions are involved, the one-to-one correspondence between the photoionization and impact ionization parameters disappears. The nondipole transitions lead to the backward/forward asymmetry of the angular distribution of ejected electrons that is absent in the dipole approximation for ionization by both fast electrons and photons. Using the He atom as an example, the character of the asymmetry for these two processes is qualitatively different and the backward/forward asymmetry results in macroscopic directed motion of secondary electrons accompanying the passing of a fast electron beam through gas or plasma. The general formulas for this drag current are derived and applied to gaseous He.  相似文献   

20.
ESR, resistivity and Seeback coefficient measurements have been performed on both ceramics and single crystals of reduced semiconducting BaTiO3.From the results that the observed temperature dependence of the Seeback coefficient can be explained by the temperature dependence of carrier concentration estimated from the electric resistivity making use of the data of electron mobility, it is concluded that the electric conduction in reduced BaTiO3 is due to the band conduction rather than to the hopping process. From the measurement of the temperature dependence of the ESR intensity of the F-center, the number of electrons trapped at the F-centers decreases exponentially with temperature, while the number of conduction electrons increases. This temperature dependence can not be simply explained as that of the unionized donors in semiconductor. Therefore, the ESR signal considered as that of the F-center may not be due to simple donors, even though some of the conduction electrons may be originated in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号