首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We report a near-field study of the excitation and propagation of surface plasmon on ordered Ag elliptical hole arrays with a scattering-type scanning near-field optical microscope. Strong dipole-like local plasmon is identified at each individual hole from near-field optical intensity and phase images. The excitation of the local plasmon at the elliptical hole is found to follow polarization excitation constraint. The coherent superposition of these local plasmon waves to form an extended surface plasmon wave propagating to an adjacent hole array is observed directly. The near-field results are consistent with the results obtained from far-field extraordinary transmission measurements. PACS 42.25.Bs; 42.25.Hz; 42.25.Ja; 42.25.Kb; 07.79.Fc  相似文献   

2.
用全矢量的三维有限差分时域(finite-difference time-domain,简称FDTD)方法,研究了正方形单元结构金属光子晶体平板的增强传输效应以及局域性表面等离子体共振现象.这种增强效应来自于两个不同的等离子体共振机制:由长方形空气孔形成的局域波导共振以及由周期性结构引起的光子晶体共振效应.对于由长方形空气孔形成的局域波导共振模式,其等离子体波全部局域在整个长方形空气孔区域中.而由周期性引起的共振模式,其频率随着金属平板表面周期性的变化而变化,相应的等离子体波分布在长方形空气孔区域的两端.产生的表面等离子体都局域在长方形空气孔区域中,电场强度得到了显著的增强. 关键词: 光子晶体 金属平板 超强透射 表面等离子体  相似文献   

3.
The cutoff characteristics of dielectric-filled circular holes embedded in a dispersive plasmonic medium are investigated. Since two distinctive operating modes, surface plasmon polariton and circular waveguide modes, can exist in the slow and fast wave regions, respectively, the cutoff characteristics for each are separately investigated for linear and radial polarizations of the guided fields. As a result, the cutoff wavelengths for the linear and radial polarizations with very small subwavelength hole radii are found to be limited by the plasma resonance wavelength and plasma wavelength, which in turn are dependent and independent, respectively, of the dielectric constant of the dielectric filler material.  相似文献   

4.
王培培  杨超杰  李洁  唐鹏  林峰  朱星 《物理学报》2013,62(16):167302-167302
金属薄膜上制备的表面等离激元颜色滤波器具有很强的颜色可调性. 在200 nm厚的金膜上, 通过聚焦离子束刻蚀, 制备一系列周期逐渐变化的圆形、方形、矩形亚波长尺寸小孔方阵列表面等离激元颜色滤波器, 改变入射光的偏振方向, 观察其超透射滤波现象. 研究发现: 对于矩形小孔阵列, 其透射光颜色随入射光偏振方向的变化而改变; 而对于圆形、方形的小孔阵列, 其透射光颜色对入射光的偏振方向并不敏感. 分析表明, 对于金膜上刻蚀的小孔结构, 虽然结构的周期性导致的表面等离激元极化子会对透射光的颜色变化产生一定影响, 但是随小孔形状变化的局域表面等离激元共振才是影响透射光颜色的决定性因素. 如果入射光没有在小孔中激发出局域表面等离激元, 则表面等离激元极化子对透射光的影响也会消失. 根据不同形状小孔周期结构透射光颜色随入射光的偏振变化特点, 制备出了包含两种小孔形状的复合周期结构. 随着入射光偏振方向的改变, 该结构会显示出不同的颜色图案. 关键词: 表面等离激元极化子 局域表面等离激元 颜色滤波器 亚波长小孔阵列  相似文献   

5.
In this paper we investigated the enhanced transmission and surface plasmon resonance through a thin gold film with a periodic array of subwavelength nanoholes. Both freestanding gold-film nanohole arrays and gold-film nanohole arrays deposited on a gallium arsenide (GaAs) substrate are considered. Periodic arrays of nanoholes exhibit two different surface plasmon resonance features: localized waveguide resonance and the well-recognized photonic crystal resonance. The tangential electric field component Ey is nonzero only in the hole region for a freestanding gold-film nanohole array, but it can exist in the hole region and in the metallic region for a gold-film nanohole array deposited on a GaAs substrate.  相似文献   

6.
We present analytical and numerical studies of a new electron plasma wave interaction mechanism, which reveals trapping of Langmuir waves in ion holes associated with nonisothermal ion distribution functions. This Langmuir ion hole interaction is a unique kinetic phenomenon governed by two second nonlinear differential equations in which the Langmuir wave electric field and ion hole potential are coupled in a complex fashion. Numerical analyses of our nonlinearly coupled differential equations exhibit trapping of localized Langmuir wave envelops in the ion hole, which is either standing or moving with sub-or super ion thermal speed. The resulting ambipolar potential of the ion hole is essentially negative, giving rise to bipolar slow electric fields. The present investigation thus offers a new Langmuir wave contraction scenario that has not been rigorously explored in plasma physics.  相似文献   

7.
Abstract We demonstrate that the rectangular nanohole arrays perforated in a 100 nm gold film can be used to tune the polarization direction of the transmitted light with maximum rotation angle of about 30 degrees. Theoretical analysis with the three-dimensional finite-difference time-domain simulations indicates that this phenomenon is attributed to the excitation of the surface plasmon wave on the gold film surface and the resonance of localized surface plasmon in the hole. With multiple plasmon resonances, the plasmonic waveplate can realize multi-wavelength polarization modulation. Our results may be useful to understanding the physical mechanism of enhanced plasmon mediated transmission and potential applications in plasmonic optical components.  相似文献   

8.
The optical transmission of random patterns of holes is believed to depend on the transmission of the independent holes only. By comparing the transmission spectra of random patterns with different densities, we show that the quasi-cylindrical wave plays an important role in the transmission of samples with large hole densities. Furthermore, we report on a speckle pattern seen in the transmission of these arrays. By studying the degree of depolarization in this speckle pattern, as a function of hole density, we are able to quantify the role of surface plasmons to the transmission.  相似文献   

9.
李江艳  甘霖  李志远 《中国物理 B》2013,22(11):117302-117302
We image optical near-field patterns at subwavelength circular hole arrays in Au film by using scanning near-field optical microscopy in near-infrared wavelengths.Periodical oscillation features are found in the near-field images at the air/Au interface and exhibit two typical kinds of standing wave oscillation forms at the wavelengths corresponding to the transmission minimum and maximum in the transmission spectrum,and the latter one originates from the excitation and interference of a surface plasmon wave at the metallic hole arrays.Our work indicates that monitoring optical near-field patterns can help to reveal many interesting properties of surface plasmon waves at metallic nanostructures and understand their underlying physical mechanisms.  相似文献   

10.
We present and numerically characterize a dual channel surface plasmon resonance (SPR) sensor based on a D-shaped fiber with a central hole for silicone oil detections. The proposed design incorporates two metalized channels to facilitate the simultaneous detection of one group of silicone oils, which can consist of two different species. It has been demonstrated that the p-polarized input light can induce two peaks among surface plasmon resonance places, which come from the coupling between the core-guided mode and the fundamental surface plasmon polariton (SPP) modes at the D-shaped surface and around the central hole surface. However, the s-polarized input light can only induce one peak among surface plasmon resonance places, which comes from the coupling between the core-guided mode and the fundamental SPP mode around the central hole surface. The simulation results show that the characteristic responses of two channels independently correspond to the refractive index variations in the silicone oils with which they are in contact. A maximum sensitivity of 3500 nm/RIU (refractive index unit) and 4400 nm/RIU are achieved for channel A and B, respectively. This kind of sensor structure and polarization related demodulation method is promising in the simultaneous multi-analytes sensing applications in the future.  相似文献   

11.
熊志成  朱丽霖  刘诚  高淑梅  朱健强 《物理学报》2015,64(24):247301-247301
设计了一种带有纳米天线的金属微腔结构, 以实现高强度表面等离子的定向激发. 在利用双狭缝结构实现表面等离子体波定向激发的基础上, 分别结合共振增强和干涉相长原理, 在传统结构的入射端面上添加纳米天线结构, 并增加狭缝通道数, 实现了定向激发的表面等离子体波的能量增强. 基于纳米天线的多通道高强度定向表面等离子体波激发装置结构简单, 系统紧凑, 并能够有效提高定向传播的表面等离子体波的能量密度和传播距离, 其对微纳光学传输和高密度光学集成领域等方面的研究具有重要意义.  相似文献   

12.
Lo HY  Ong HC 《Optics letters》2012,37(13):2736-2738
We measured the decay rates of two degenerate surface plasmon modes in Au nanohole arrays with different hole sizes by angle-resolved reflectivity spectroscopy. For each hole size, at the spectral region where resonant coupling occurs, we observed a large modification in decay rates, leading to the formation of dark and bright modes. The change in decay rates is well explained by temporal coupled mode theory. The deduced coupling constant is found to increase with increasing hole diameter. This study provides us a simple and effective means to control the decay rates of dark and bright modes, which are useful in plasmonic applications.  相似文献   

13.
By using the curved space-time Klein-Gordon equation, the form of the wave function of a scalar particle near a nonrotating black hole is obtained. It is shown that although the radial wave function oscillates infinitely rapidly near the black hole, the probability density remains finite even on the event horizon. This is consistent with the fact that the Schwarzschild surface is nonsingular. An expression is given for the large angular momentum scattering differential cross section by comparing the asymptotic form of the radial wave equation with the corresponding Coulomb radial wave equation in ordinary quantum mechanics.  相似文献   

14.
Multipolar plasmon optical excitations at spherical gold nanoparticles and their manifestations in the particle images formatted in the particle surface proximity are studied. The multipolar plasmon size characteristic: plasmon resonance frequencies and plasmon damping rates were obtained within rigorous size dependent modelling. The realistic, frequency dependent dielectric function of a metal was used. The distribution of light intensity and of electric field radial component at the flat square scanning plane scattered by a gold sphere of radius 95 nm was acquired. The images resulted from the spatial distribution of the full mean Poynting vector including near-field radial components of the scattered electromagnetic field. Monochromatic images at frequencies close to and equal to the plasmon dipole and quadrupole resonance frequencies are discussed. The changes in images and radial components of the scattered electromagnetic field distribution at the scanning plane moved away from the particle surface from near-field to far-field region are discussed.  相似文献   

15.
We have observed two-dimensional plasmons in hole space charge layers of silicon. On Si(110) surfaces the plasmon mass depends on the charge density and shows a significant anisotropy for different directions of the plasmon wavevector in the surface. The determination of the plasmon mass allows detailed informations on the anisotropic and nonparabolic 2-D bandstructure of hole space charge layers.  相似文献   

16.
The principle of surface wave plasma discharge in a rectangular cavity is introduced simply based on surface plasmon polariton theory. The distribution of surface-wave electric field at the interface of the plasma-dielectric slab is investigated by using the three-dimensional finite-difference time-domain method (3D-FDTD) with different slot-antenna structures. And the experimental image of discharge with a novel slot antenna array and the simulation of the electric field with this slot antenna array are both displayed. Combined with the distribution of surface wave excitation and experimental results, the numerical simulation performed by using 3D-FDTD is shown to be a useful tool in the computer-aided antenna design for large area planar-type surface-wave plasma sources.  相似文献   

17.
用热蒸发的方法制备了纳米Ag材料,并用扫描电子显微镜对纳米粒子进行了形貌的表征,通过紫外—可见分光光度计得到Ag纳米粒子的透过谱,得到了Ag纳米粒子的表面等离子体共振的峰值位置.以罗丹明6G为探针分子测定Ag纳米粒子衬底的表面增强拉曼散射效应,通过拉曼散射光谱与透过谱研究了由表面等离子体激元的强极化场引起的表面增强拉曼散射效应,结合透过谱与拉曼增益因子提出了一种描述表面等离子体光学和电学特性的方法,并结合扫描电镜的结果给出了不同结构的纳米Ag材料对表面等离子体激元强度的影响. 关键词: 热蒸发 纳米Ag材料 表面等离子体 表面增强拉曼散射  相似文献   

18.
We study, both experimentally and theoretically, the scattering of electromagnetic waves by a subwavelength hole fabricated in a thin metallic film. We employ the scanning near-field optical microscopy in order to reconstruct experimentally the full three-dimensional structure of the electromagnetic fields in the vicinity of the hole. We observe an interference of all excited waves with an incident laser beam which allows us to gain the information about the wave phases. Along with the well-known surface plasmon polaritons propagating primarily in the direction of the incident beam polarization, we observe the free-space radiation diffracted by the hole. We compare the experimental results with the fields of pure electric and pure magnetic dipoles as well as with direct numerical simulations. We confirm that a single hole in a thin metallic film excited at the normal incidence manifests itself as an effective magnetic dipole in the visible spectral range.  相似文献   

19.
We report on the possibility of realizing a radial mode on a metallic conical structure by means of a linearly polarized incident wave. This result is utilized for observing surface plasmon polaritons adiabatic compression on a tapered conical nanostructure. The ingredients for radial mode generation are described in terms of phase-matching of the components of the electromagnetic field. We conclude by showing the robustness of this approach, explaining the polaritonic behavior as a function of the device geometry.  相似文献   

20.
Superenhanced light transmission through subwavelength rectangular hole arrays have been reported and some investigations have been made into the physical origin of this phenomenon [K.J. Klein Koerkamp et al., Phys. Rev. Lett. 92, 183901 (2004)]. In our current work, by performing FDTD (finite difference in the time domain) numerical simulations, we demonstrate that mechanism that is different from surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces may account for this superenhanced light transmission. We suggest that for arrays of rectangular holes with small enough width in comparison to the wavelength of the incident light, standing electromagnetic fields can be set up inside the cavity by the surface plasmons on the hole walls with its intensity being substantially enhanced inside the cavity. So resonant cavity-enhanced light transmission is predominant and responsible for its superenhanced light transmission. Rectangular holes behave as Fabry-Pérot resonance cavities except that the frequency of their fundamental modes is restricted by their TM cutoff frequency. However we believe that both localized surface plasmon modes and surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces have their shares in extraordinary optical transmission of rectangular hole arrays especially when the width of the rectangular hole is not small enough and the metal film is not thick enough.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号