首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The static and resonance properties of a quasi-two-dimensional antiferromagnet phase on a distorted triangular lattice of KFe(MoO4)2 have been experimentally studied. Magnetization curves exhibit features corresponding to the spin-flop transition in a collinear biaxial antiferromagnet and simultaneously show a magnetization plateau characteristic of a triangular spin structure. The magnetic resonance spectra also display absorption lines corresponding to the spin structures of both types. The experimental data are described in terms of a model comprising alternating weakly bound magnetic layers, in which the main two exchange integrals have different values. Below the Néel temperature (T N =2.5 K), some of these layers possess a collinear antiferromagnetic structure, while the other layers have a triangular or spiral structure.  相似文献   

2.
The specific features of the spin-flop and spin-flip transitions in thin antiferromagnetic layers and “ ferromagnet-nonmagnetic metal” multilayer magnetic structures are considered. The dependence of the magnetic fields corresponding to these phase transitions on the thickness of the antiferromagnet or on the number of layers in the multilayer is determined.  相似文献   

3.
Two-stage spin-flop transitions are observed in the quasi-one-dimensional antiferromagnet BaCu(2)Si(2)O(7). A magnetic field applied along the easy axis induces a spin-flop transition at 2.0 T followed by a second transition at 4.9 T. The magnetic susceptibility indicates the presence of Dzyaloshinskii-Moriya (DM) antisymmetric interactions between the intrachain neighboring spins. We discuss a possible mechanism whereby the geometrical competition between DM and interchain interactions, as discussed for the two-dimensional antiferromagnet La(2)CuO(4), causes the two-stage spin-flop transitions.  相似文献   

4.
Computer simulation in a single domain multilayer model is used to investigate magnetization flop in magnetic tunnel junctions, exchange-biased by pinned synthetic antiferromagnets with the multilayer structure NiFe/AlOx/Co/Ru/Co/FeMn. The resistance to magnetization flop increases with decreasing cell size due to increased shape anisotropy and hence increased coercivity of the Co layers in the synthetic antiferromagnet. However, when the synthetic antiferromagnet is not or weakly pinned, the magnetization directions of the two layers sandwiching AlOx, which mainly determine the magnetoresistance, are aligned antiparallel due to a strong magnetostatic interaction, resulting in an abnormal MR change from the high MR state to zero, irrespective of the direction of the free layer switching. This emphasizes an importance of a strong pinning of the synthetic antiferromagnet at small cell dimensions. The threshold field for magnetization flop is found to increase linearly with increasing antiferromagnetic exchange coupling between the two Co layers in the synthetic antiferromagnet. The restoring force from magnetization flop to the normal synthetic antiferromagnetic structure is roughly proportional to the resistance to magnetization flop. Irrespective of the magnetic parameters and cell sizes, the state of magnetization flop does not exist near Ha=0, indicating that magnetization flop is driven by the Zeeman energy.  相似文献   

5.
The purpose of the work is to find the dependence of growth rate of magnetization centers of various types on their surrounding by other nucleation centers in a synthetic Pt/Co/Ir/Co/Pt ferrimagnet with perpendicular magnetic anisotropy. The following four types of nucleation centers exist in a sample with two ferromagnetic layers of different thicknesses: P+ centers correspond to the regions where the magnetizations of the thick and thin Co layers are directed along an applied field (↑↑); P– centers are the regions where the magnetizations of the layers are opposite to an applied field (↓↓); and AP+ and AP– centers correspond to the regions where the magnetizations of the thick and thin Co layers are opposite to each other and the total magnetic moment is along (↑↓) or opposite to (↓↑) an applied field, respectively. P– nucleation centers are found to be surrounded by AP+ regions in any field and exhibit a monotonic field dependence of their boundary. The field dependence of the growth rate of AP– nucleation centers is nonmonotonic since, as the field increases, they are surrounded by AP+ nucleation centers, AP+ and P– regions, and only P– nucleation centers in strong fields.  相似文献   

6.
Tunneling conductance in clean ferromagnet/ ferromagnet/d-wave superconductor (F/F/d-wave S) double tunnel junctions is studied by use of four-component Bogoliubov-de Gennes equations. The novel Andreev reflection appears due to noncollinear magnetizations, in which the incident electron and the Andreev-reflected hole come from the same spin subband, resulting in spin-triplet pairing states near the F/S interface. In the highly polarized Fs case, the conductance within the energy gap exhibits a conversion from a zero-bias dip in the parallel magnetizations to a spilt zero-bias peak in the perpendicular magnetizations.  相似文献   

7.
Four-component Bogoliubov-de Gennes equations are applied to study tunneling conductance spectra of ferromagnet/ferromagnet/d-wave superconductor (F1/F2/d-wave S) tunnel junctions and to find out signs of spin-triplet pairing correlations induced in the proximity structure. The pairing correlations with equal spins arises from the novel Andreev reflection (AR), which requires at least three factors: the usual AR at the F2/S interface, spin flip in the F2 layer, and superconducting coherence kept up in the F2 layer. Effects of angle α between magnetizations of the two F layers, polarizations of the F1 and F2 layers, the thickness of the F2 layer, and the orientation of the d-wave S crystal on the tunneling conductance are investigated. A conversion from a zero-bias conductance dip at α = 0 to a zero-bias conductance peak at a certain value of α can be seen as a sign of generated spin-triplet correlations.  相似文献   

8.
Classical uniaxially anisotropic Heisenberg and XY antiferromagnets in a field along the easy axis on a square lattice are analysed, applying ground state considerations and Monte Carlo techniques. The models are known to display antiferromagnetic and spin-flop phases. In the Heisenberg case, a single-ion anisotropy is added to the XXZ antiferromagnet, enhancing or competing with the uniaxial exchange anisotropy. Its effect on the stability of non-collinear structures of biconical type is studied. In the case of the anisotropic XY antiferromagnet, the transition region between the antiferromagnetic and spin-flop phases is found to be dominated by degenerate bidirectional fluctuations. The phase diagram is observed to resemble closely that of the XXZ antiferromagnet without single-ion anisotropy.  相似文献   

9.
A quantitative theory of the Josephson effect in SFIFS junctions (S denotes bulk superconductor, F is metallic ferromagnet, and I is insulating barrier) is presented in the dirty limit. A fully self-consistent numerical procedure is employed to solve the Usadel equations for arbitrary values of the F-layer thicknesses, magnetizations, and interface parameters. In the case of antiparallel ferromagnet magnetizations, the effect of critical current I c enhancement by the exchange energy H is observed, while in the case of parallel magnetizations the junction exhibits a transition to the π state. In the limit of thin F layers, we study these peculiarities of the critical current analytically and explain them qualitatively; the scenario of the 0-πtransition in our case differs from those studied before. The effect of switching between 0 and π states by changing the mutual orientation of F layers is demonstrated.  相似文献   

10.
We investigate the superconducting transition temperature Tc of epitaxial ferromagnet/superconductor/ferromagnet (FSF) triple layers with perpendicular magnetic anisotropy. Due to the different coercive fields of the top and bottom F layers (F=[Co/Pt] multilayer) different magnetized states can be achieved: a fully magnetized state where the F layer magnetizations are parallel oriented, a state DM where one layer is demagnetized, and a state DD where both layers are demagnetized. Tc is maximum in the fully magnetized state and decreases consecutively from the DM to the DD state due to the different contributions from magnetic stray fields originating from the domain walls present in the demagnetized layers. The role of the proximity effect and the effect of the stray fields on the superconductivity in the S layer can be distinguished by analyzing the temperature dependence of the upper critical field and by comparison with data taken on an FISIF multilayer where I is an insulating SiO2 barrier. Hence, we demonstrate that Tc can be manipulated by the intentional creation of different stray-field configurations in the F layers. PACS 68.55.JK; 74.45.+c; 74.78.Db; 74.78.Fk; 75.47.-m  相似文献   

11.
Magnetisation measurements up to 23 T and submillimeter wave ESR in the frequency region 48-380 GHz have been performed on NaNiO2 powders at low temperature. Also typical spectra above the Néel temperature are shown. At 4 K the magnetisation shows a spin-flop transition at 1.8 T and saturation at 10 T. /Ni confirms the low spin state of the Ni3+ ions. The susceptibility exhibits a maximum at K with and K. NaNiO2 is an A-type antiferromagnet: we derive K and K for the interactions between Ni ions within and between adjacent layers, respectively. The AFMR spectra yield an energy gap of 52.5 GHz, in agreement with the spin-flop value derived from the magnetisation. The anisotropy of the g factor observed at 100 K with can be attributed to the Jahn-Teller effect for Ni3+ ions in the low spin state, which stabilises the occupation. We finally comment on the isomorphic controversial Li1-xNi1+xO2 compound. Received 9 March 2000 and Received in final form 13 July 2000.  相似文献   

12.
Camley RE  Li D 《Physical review letters》2000,84(20):4709-4712
The temperature dependence of the magnetization in fcc Fe on Cu(100) is calculated using a self-consistent local mean-field theory. The model reproduces an experimental magnetization oscillation as a function of film thickness and supports a picture where the top two layers are ferromagnetically coupled, and the remaining layers are antiferromagnetically coupled. The origin of the puzzling linear temperature dependence in oscillation amplitude is understood as a "surface phenomena" of the antiferromagnetic layer at the Fe/Cu interface. Proximity effects between a thin antiferromagnet with a low Neel temperature and a neighboring ferromagnet with a higher Curie temperature are discussed.  相似文献   

13.
The magnetic decay time of a synthetic antiferromagnet comprised of two closely spaced magnetic dipoles is measured in the presence of microwave excitation. The system is known to be highly stable with respect to switching between its two antiparallel ground states under quasistatic magnetic fields. We show that an order of magnitude lower field can switch the pair, provided the field is applied in resonance with the optical eigenmode of the collective spin dynamics in the system. We furthermore show that thermal agitation can play an essential role in spin-flop switching for resonant excitations of near- or subcritical amplitude.  相似文献   

14.
The field and temperature dependences of the magnetization of PrAg are found to be those of an antiferromagnet whose Néel point is ~11°K and which undergoes a spin-flop transition at a critical field of ~5 kOe, as confirmed by high-field neutron diffraction measurements. Preliminary comparisons are made with properties calculated from crystal-field theory.  相似文献   

15.
The superconducting and magnetic states of asymmetric ferromagnet/superconductor/ferromagnet (F/S/F′) nanostructures have been investigated using the boundary value problem for the Eilenberger function. It has been shown that 0- and π-phase superconducting states of pure thin F/S/F′ trilayers are controlled by the magnitude and sign of electron correlations in the F and F′ layers, as well as by the competition between homogeneous Bardeen-Cooper-Schrieffer (BCS) pairing and inhomogeneous Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) pairing. The LOFF-BCS-LOFF separate re-entrant superconductivity has been predicted for F/S/F′ trilayers. A continuous control of the pair-breaking factor in the Eilenberger function and transition to the state with re-entrant superconductivity is achieved by varying the thickness of the F′ layer. Sine-modulated 2D LOFF states in asymmetric F/S/F′ trilayers are possible not only for parallel, but also for antiparallel orientations of the magnetizations of the F and F′ layers; this fact significantly facilitates the experimental implementation of the predicted phenomena.  相似文献   

16.
The mutual interplay between superconductivity and magnetism in superconductor/ferromagnet heterostructures may give rise to unusual proximity effects beyond current knowledge. Especially, spin-triplet Cooper pairs could be created at carefully engineered superconductor/ferromagnet interfaces. Here we report a giant proximity effect on spin dynamics in superconductor/ferromagnet/superconductor Josephson junctions. Below the superconducting transition temperature T_C, the ferromagnetic resonance field at X-band(~9.0 GHz) shifts rapidly to a lower field with decreasing temperature. In strong contrast, this phenomenon is absent in ferromagnet/superconductor bilayers and superconductor/insulator/ferromagnet/superconductor multilayers. Such an intriguing phenomenon can not be interpreted by the conventional Meissner effect. Instead, we propose that the strong influence on spin dynamics could be due to spin-transfer torque associated with spin-triplet supercurrents in ferromagnetic Josephson junctions with precessing magnetization.  相似文献   

17.
A low-field spin-flop transition in the quasi-one-dimensional antiferromagnet BaCu2Si2O7 is exploited to study the polarization dependence of low-energy magnetic excitations. The measured longitudinal spectrum is best described as a single broad continuum, with no sharp "longitudinal mode," in apparent contradiction with the commonly used chain-mean-field and random phase approximation (MF/RPA) theories. The observed behavior is also quite different than that previously seen in the related KCuF3 material, presumably due to a large difference in the relative strength of interchain interactions. The results highlight the limitations of the chain-MF/RPA approach.  相似文献   

18.
杨雷雷  刘大勇  陈东猛  邹良剑 《中国物理 B》2016,25(2):27401-027401
The magnetic properties of iron pnictide superconductors with magnetic rare-earth ions under strong magnetic field are investigated based on the cluster self-consistent field method. Starting from an effective Heisenberg model, we present the evolution of magnetic structures on magnetic field in RFeAsO(R = Ce, Pr, Nd, Sm, Gd, and Tb) and RFe_2As_2(R =Eu) compounds. It is found that spin-flop transition occurs in both rare-earth and iron layers under magnetic field, in good agreement with the experimental results. The interplay between rare-earth and iron spins plays a key role in the magneticfield-driven magnetic phase transition, which suggests that the rare-earth layers can modulate the magnetic behaviors of iron layers. In addition, the factors that affect the critical magnetic field for spin-flop transition are also discussed.  相似文献   

19.
The existence of a field-induced transition between two types of domain walls is inferred from the field dependence of the rotational hysteresis, as observed in the spin-flop state of the biaxial antiferromagnet (C2H5NH3)2CuCl4. In the spin-flop state a weak-ferromagnetic (WF) moment is present along the difficult axis; the hysteresis is connected with irreversible domain-wall movements, the leverage on the walls being provided by the WF moment in the external field.  相似文献   

20.
Magnetic-structure distortions near the antiferromagnet surface produced by a magnetic field are studied theoretically. Both compensated and uncompensated surfaces are considered. The characteristic depth to which the distortions penetrate into the antiferromagnet is calculated, and the dependence of this depth on the magnetic field strength is studied over the entire range of magnetic fields up to the field at which the magnetizations of the two antiferromagnet sublattices become aligned with the external field. The surface magnetic moment associated with these distortions is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号