首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Exposing the (111) surface of the topological insulator Bi(2)Se(3) to carbon monoxide results in strong shifts of the features observed in angle-resolved photoemission. The behavior is very similar to an often reported "aging" effect of the surface, and it is concluded that this aging is most likely due to the adsorption of rest gas molecules. The spectral changes are also similar to those recently reported in connection with the adsorption of the magnetic adatom Fe. All spectral changes can be explained by a simultaneous confinement of the conduction band and valence band states. This is possible only because of the unusual bulk electronic structure of Bi(2)Se(3). The valence band quantization leads to spectral features which resemble those of a band gap opening at the Dirac point.  相似文献   

2.
Using angular resolved photoemission spectroscopy we studied the evolution of the surface electronic structure of the topological insulator Bi(2)Se(3) as a function of water vapor exposure. We find that a surface reaction with water induces a band bending, which shifts the Dirac point deep into the occupied states and creates quantum well states with a strong Rashba-type splitting. The surface is thus not chemically inert, but the topological state remains protected. The band bending is traced back to Se abstraction, leaving positively charged vacancies at the surface. Because of the presence of water vapor, a similar effect takes place when Bi(2)Se(3) crystals are left in vacuum or cleaved in air, which likely explains the aging effect observed in the Bi(2)Se(3) band structure.  相似文献   

3.
Bi(2)Te(2)Se, a ternary tetradymite compound, has recently been identified to be a three-dimensional topological insulator. In this paper, we theoretically study the electronic structures of bulk and thin films of Bi(2)Te(2)Se employing spin-orbit coupling (SOC) self-consistently with density-functional theory. It is found that SOC plays an important role in determining the electronic properties of Bi(2)Te(2)Se. A finite bandgap opens up in the surface states of Bi(2)Te(2)Se thin films due to the hybridization of the top and bottom surface states of films. The intrinsic Bi(2)Te(2)Se thin films of three or more quintuple layers exhibit a robust topological nature of electronic structure with the Fermi energy intersecting the Dirac cone of the surface states only once between time-reversal-invariant momenta. These characteristics of Bi(2)Te(2)Se are similar to the topological behavior of Bi(2)Te(3), promising a variety of potential applications in nanoelectronics and spintronics.  相似文献   

4.
We have performed scanning tunneling microscopy and differential tunneling conductance (dI/dV) mapping for the surface of the three-dimensional topological insulator Bi(2)Se(3). The fast Fourier transformation applied to the dI/dV image shows an electron interference pattern near Dirac node despite the general belief that the backscattering is well suppressed in the bulk energy gap region. The comparison of the present experimental result with theoretical surface and bulk band structures shows that the electron interference occurs through the scattering between the surface states near the Dirac node and the bulk continuum states.  相似文献   

5.
We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 toward increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance Δρ(xx) that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3.  相似文献   

6.
We report the first measurements of phonon dispersion curves on the (001) surface of the strong three-dimensional topological insulator Bi2Se3. The surface phonon measurements were carried out with the aid of coherent helium beam surface scattering techniques. The results reveal a prominent signature of the exotic metallic Dirac fermion quasiparticles, including a strong Kohn anomaly. The signature is manifest in a low energy isotropic convex dispersive surface phonon branch with a frequency maximum of 1.8 THz and having a V-shaped minimum at approximately 2kF that defines the Kohn anomaly. Theoretical analysis attributes this dispersive profile to the renormalization of the surface phonon excitations by the surface Dirac fermions. The contribution of the Dirac fermions to this renormalization is derived in terms of a Coulomb-type perturbation model.  相似文献   

7.
The results of the theoretical investigation of the bulk and surface electronic structures of Tl-V-VI2 compounds, where V is the Bi or Sb semimetal and VI is the Se or Te chalcogen, are reported. It has been shown that these compounds are three-dimensional topological insulators. Both a topologically protected surface state, which forms a Dirac cone at the $ \bar \Gamma $ \bar \Gamma point, and occupied surface states, which are localized in the band gap, are present on the surface of these compounds.  相似文献   

8.
Several small-band-gap semiconductors are now known to protect metallic surface states as a consequence of the topology of the bulk electron wave functions. The known "topological insulators" with this behavior include the important thermoelectric materials Bi?Te? and Bi?Se?, whose surfaces are observed in photoemission experiments to have an unusual electronic structure with a single Dirac cone. We study in-plane (i.e., horizontal) transport in thin films made of these materials. The surface states from top and bottom surfaces hybridize, and conventional diffusive transport predicts that the tunable hybridization-induced band gap leads to increased thermoelectric performance at low temperatures. Beyond simple diffusive transport, the conductivity shows a crossover from the spin-orbit-induced antilocalization at a single surface to ordinary localization.  相似文献   

9.
We report a transport study of exfoliated few monolayer crystals of topological insulator Bi2Se3 in an electric field effect geometry. By doping the bulk crystals with Ca, we are able to fabricate devices with sufficiently low bulk carrier density to change the sign of the Hall density with the gate voltage V(g). We find that the temperature T and magnetic field dependent transport properties in the vicinity of this V(g) can be explained by a bulk channel with activation gap of approximately 50 meV and a relatively high-mobility metallic channel that dominates at low T. The conductance (approximately 2×7e2/h), weak antilocalization, and metallic resistance-temperature profile of the latter lead us to identify it with the protected surface state. The relative smallness of the observed gap implies limitations for electric field effect topological insulator devices at room temperature.  相似文献   

10.
Circular dichroism in the angular distribution of photoelectrons from SrTiO(3):Nb and Cu(x)Bi(2)Se(3) is investigated by 7-eV laser angle-resolved photoemission spectroscopy. In addition to the well-known node that occurs in the circular dichroism pattern when the incidence plane matches the mirror plane of the crystal, we show that another type of node occurs when the mirror plane of the crystal is vertical to the incidence plane and the electronic state is two-dimensional. The flower-shaped circular dichroism patterns in the angular distribution occurring around the Fermi level of SrTiO(3):Nb and around the Dirac point of Cu(x)Bi(2)Se(3) are explained on equal footings. We point out that the penetration depth of the topological states of Cu(x)Bi(2)Se(3) depends on momentum.  相似文献   

11.
A topological superconductor (TSC) is characterized by the topologically protected gapless surface state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has not yet been discovered, the doped topological insulator Cu(x)Bi(2)Se(3), which superconducts below ~3 K, has been predicted to possess a topological superconducting state. We report that the point-contact spectra on the cleaved surface of superconducting Cu(x)Bi(2)Se(3) present a zero-bias conductance peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all possible superconducting states help us conclude that this ZBCP is due to Majorana fermions and gives evidence for a topological superconductivity in Cu(x)Bi(2)Se(3). In addition, we found an unusual pseudogap that develops below ~20 K and coexists with the topological superconducting state.  相似文献   

12.
We use ultrafast laser pulses to experimentally demonstrate that the second-order optical response of bulk single crystals of the topological insulator Bi(2)Se(3) is sensitive to its surface electrons. By performing surface doping dependence measurements as a function of photon polarization and sample orientation we show that second harmonic generation can simultaneously probe both the surface crystalline structure and the surface charge of Bi(2)Se(3). Furthermore, we find that second harmonic generation using circularly polarized photons reveals the time-reversal symmetry properties of the system and is surprisingly robust against surface charging, which makes it a promising tool for spectroscopic studies of topological surfaces and buried interfaces.  相似文献   

13.
Topological surface states are protected against local perturbations, but this protection does not extend to chemical reaction over the whole surface, as demonstrated by theoretical studies of the oxidation of Bi(2)Se(3) and its effects on the surface spin polarization and current. While chemisorption of O(2) largely preserves the topological surface states, reaction with atomic O removes the original surface states and yields two new sets of surface states. One set forms a regular Dirac cone but is topologically trivial. The other set, while topologically relevant, forms an unusual rounded Dirac cone. The details are governed by the hybridization interaction at the interface.  相似文献   

14.
Zhang W  Yu R  Feng W  Yao Y  Weng H  Dai X  Fang Z 《Physical review letters》2011,106(15):156808
To explain the unusual nonsaturating linear magnetoresistance observed in silver chalcogenides, the quantum scenario has been proposed based on the assumption of gapless linear energy spectrum. Here we show, by first principles calculations, that β-Ag2Te with distorted antifluorite structure is in fact a topological insulator with gapless Dirac-type surface states. The characteristic feature of this new binary topological insulator is the highly anisotropic Dirac cone, in contrast with known examples, such as Bi2Te3 and Bi2Se3. The Fermi velocity varies an order of magnitude by rotating the crystal axis.  相似文献   

15.
We have performed angle-resolved photoemission spectroscopy on Pb(Bi(1-x)Sb(x))2Te4, which is a member of lead-based ternary tellurides and has been theoretically proposed as a candidate for a new class of three-dimensional topological insulators. In PbBi2Te4, we found a topological surface state with a hexagonally deformed Dirac-cone band dispersion, indicating that this material is a strong topological insulator with a single topological surface state at the Brillouin-zone center. Partial replacement of Bi with Sb causes a marked change in the Dirac carrier concentration, leading to the sign change of Dirac carriers from n type to p type. The Pb(Bi(1-x)Sb(x))2Te4 system with tunable Dirac carriers thus provides a new platform for investigating exotic topological phenomena.  相似文献   

16.
We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results show that the Dirac cone is actually robust against nonmagnetic perturbations and imply a unique situation where the topologically protected one- and two-dimensional edge states are coexisting at the surface.  相似文献   

17.
We observe an insulator-to-metal transition in crystalline silicon doped with sulfur to nonequilibrium concentrations using ion implantation followed by pulsed-laser melting and rapid resolidification. This insulator-to-metal transition is due to a dopant known to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T>1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3×10(20) cm(-3). Conduction in insulating samples is consistent with variable-range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.  相似文献   

18.
We show that in the new topological-insulator compound Bi(1.5)Sb(0.5)Te(1.7)Se(1.3) one can achieve a surfaced-dominated transport where the surface channel contributes up to 70% of the total conductance. Furthermore, it was found that in this material the transport properties sharply reflect the time dependence of the surface chemical potential, presenting a sign change in the Hall coefficient with time. We demonstrate that such an evolution makes us observe both Dirac holes and electrons on the surface, which allows us to reconstruct the surface band dispersion across the Dirac point.  相似文献   

19.
Various novel physical properties have emerged in Dirac electronic systems, especially the topological characters protected by symmetry. Current studies on these systems have been greatly promoted by the intuitive concepts of Berry phase and Berry curvature, which provide precise definitions of the topological phases. In this topical review, transport properties of topological insulator(Bi2Se3), topological Dirac semimetal(Cd3As2), and topological insulator-graphene heterojunction are presented and discussed. Perspectives about transport properties of two-dimensional topological nontrivial systems,including topological edge transport, topological valley transport, and topological Weyl semimetals, are provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号