首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Superconducting states of pure and doped graphene   总被引:3,自引:0,他引:3  
We study the superconducting phases of the two-dimensional honeycomb lattice of graphene. We find two spin singlet pairing states; s wave and an exotic p+ip that is possible because of the special structure of the honeycomb lattice. At half filling, the p+ip phase is gapless and superconductivity is a hidden order. We discuss the possibility of a superconducting state in metal coated graphene.  相似文献   

2.
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three \({t_{{2_g}}}\) orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the \({d_{{x^2} - {y^2}}}\) orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.  相似文献   

3.
Pressure-induced superconductivity in a spin-ladder cuprate Sr2Ca12Cu24O41 has not been studied on a microscopic level thus far although the superconductivity was already discovered in 1996. We have improved the high-pressure technique using a large high-quality crystal, and succeeded in studying the superconductivity using 63Cu nuclear magnetic resonance. We found that the anomalous metallic state reflecting the spin-ladder structure is realized and the superconductivity possesses an s-wave-like character in the meaning that a finite gap exists in the quasiparticle excitation: At a pressure of 3.5 GPa, we observed two excitation modes in the normal state from the relaxation rate T-11. One gives rise to an activation-type component in T-11, and the other T-linear component linking directly with the superconductivity. This gapless mode likely arises from free motion of holon-spinon bound states appearing by hole doping, and the pairing of them likely causes the superconductivity.  相似文献   

4.
We propose a new state of matter in which the pairing interactions carve out a gap within the interior of a large Fermi ball, while the exterior surface remains gapless. This defines a system which contains both a superfluid and a normal Fermi liquid simultaneously, with both gapped and gapless quasiparticle excitations. The universality class of this state can be realized at weak coupling. We predict that a cold mixture of two species of fermionic atoms with different mass will exhibit this state. For electrons in appropriate solids, it would define a material that is simultaneously superconducting and metallic.  相似文献   

5.
Topological insulators are emergent states of quantum matter that are gapped in the bulk with timereversal symmetry-preserved gapless edge/surface states, adiabatically distinct from conventional materials. By proximity to various magnets and superconductors, topological insulators show novel physics at the interfaces, which give rise to two new areas named topological spintronics and topological quantum computation. Effects in the former such as the spin torques, spin-charge conversion, topological antiferromagnetic spintronics, and skyrmions realized in topological systems will be addressed. In the latter, a superconducting pairing gap leads to a state that supports Majorana fermions states, which may provide a new path for realizing topological quantum computation. Various signatures of Majorana zero modes/edge mode in topological superconductors will be discussed. The review ends by outlooks and potential applications of topological insulators. Topological superconductors that are fabricated using topological insulators with superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.  相似文献   

6.
We present the dispersion relations for quasiparticle excitations about the color-flavor locked ground state of QCD at high baryon density. In the presence of condensates which pair light and strange quarks there need not be an energy gap in the quasiparticle spectrum. This raises the possibility of gapless color superconductivity, with a Meissner effect but no minimum excitation energy. Analysis within a toy model suggests that gapless color superconductivity may occur only as a metastable phase.  相似文献   

7.
Pairing isomers     
The formalism for quadrupole pairing forces acting simultaneously with monopole pairing and quadrupole particle-hole forces has been worked out in the framework of BCS and RPA. The low-lying 0+ states are studied. Expressions for E0 and E2 transition probabilities as well as spectroscopic amplitudes for (t, p) and (p, t) reactions are given. The formalism is applied to the actinide region and it is shown that the low-lying 0+ states strongly populated in (p, t) but not in (t, p) reactions can be explained as pairing isomers having an appreciably smaller value of the pairing gap Δ than the ground state. This phenomenon is similar to the phenomenon of gapless superconductivity in solid state physics, i.e. the pairing isomers are formed because of the inhomogeneity of oblate and prolate levels in the vicinity of the Fermi surface.  相似文献   

8.
Considerable progress has been made over the last decade in understanding the phenomenological properties of the cuprate high-Tc superconductors and in producing well characterized high quality materials. Nevertheless, the pairing mechanism itself remains controversial. We establish a criterion to test theories for layered superconductors relying on a substantial interlayer contribution. The criterion is based on the ratio of the interlayer contribution to the total superfluid density, which is traced back to the inverse squared effective mass anisotropy, . can be measured rather accurately by various experimental techniques. It turns out that models relying on interlayer pairing cannot be considered as serious candidates for the mechanism of superconductivity in cuprate superconductors. Received: 26 November 1998 / Accepted: 30 November 1998  相似文献   

9.
A planar quantum-well device made of a gapless graphene nanoribbon with edges in contact with gapped graphene sheets is examined. The size-quantization spectrum of charge carriers in an asymmetric quantum well is shown to exhibit a pseudospin splitting. Interface states of a new type arise from the crossing of dispersion curves of gapless and gapped graphene materials. The exciton spectrum is calculated for a planar graphene quantum well. The effect of an external electric field on the exciton spectrum is analyzed.  相似文献   

10.
A previously investigated model of a two band superconductor with hybrid pairing and molecular fields is enlarged by exchange interactions generating those fields. The fields are calculated selfconsistently in molecular field approximation at zero temperature. They turn out to stabilise the previously found new state of gapless superconductivity and non vanishing spin polarization for a wide range of exchange couplings, in particular for zero external field.Dedicated to B. Mühlschlegel on the occasion of his 60th birthdayWork performed within the research program of Sonderforschungsbereich 125 Aachen-Jülich-Köln  相似文献   

11.
Pairing symmetry of superconducting graphene   总被引:1,自引:0,他引:1  
The possibility of intrinsic superconductivity in alkali-coated graphene monolayers has been recently suggested theoretically. Here, we derive the possible pairing symmetries of a carbon honeycomb lattice and discuss their phase diagram. We also evaluate the superconducting local density of states (LDOS) around an isolated impurity. This is directly related to scanning tunneling microscopy experiments, and may evidence the occurrence of unconventional superconductivity in graphene.  相似文献   

12.
We propose a wide universality class of gapless superfluids, and analyze a limit that might be realized in quark matter at intermediate densities. In the breached pairing color superconducting phase heavy s quarks, with a small Fermi surface, pair with light u or d quarks. The ground state has a superfluid and a normal Fermi component simultaneously. We expect a second-order phase transition, as a function of increasing density, from the breached pairing phase to the conventional color-flavor locked phase.  相似文献   

13.
14.
Quantum spin Hall effect in graphene   总被引:1,自引:0,他引:1  
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.  相似文献   

15.
We propose a new picture for superconductivity in kappa-(BEDT-TTF)2X salts arguing that small- q electron-phonon scattering dominates the pairing. We reproduce the distinct X-shaped d-wave gap reported recently by magneto-optic measurements and we argue that the softness of the momentum structure of the gap and the near degeneracy of s- and d-wave gap states may be at the origin of the experimental controversy about the gap symmetry. We show that a magnetic field applied parallel to the planes may induce extended gapless regions on the Fermi surface accounting for the experimental signatures of a Fulde-Ferrel-Larkin-Ovchinikov state and it may induce gap symmetry transitions as well.  相似文献   

16.
New two-dimensional systems such as the surfaces of topological insulators (TIs) and graphene offer the possibility of experimentally investigating situations considered exotic just a decade ago. These situations include the quantum phase transition of the chiral type in electronic systems with a relativistic spectrum. Phonon-mediated (conventional) pairing in the Dirac semimetal appearing on the surface of a TI causes a transition into a chiral superconducting state, and exciton condensation in these gapless systems has long been envisioned in the physics of narrow-band semiconductors. Starting from the microscopic Dirac Hamiltonian with local attraction or repulsion, the Bardeen–Cooper–Schrieffer type of Gaussian approximation is developed in the framework of functional integrals. It is shown that owing to an ultrarelativistic dispersion relation, there is a quantum critical point governing the zero-temperature transition to a superconducting state or the exciton condensed state. Quantum transitions having critical exponents differ greatly from conventional ones and belong to the chiral universality class. We discuss the application of these results to recent experiments in which surface superconductivity was found in TIs and estimate the feasibility of phonon pairing.  相似文献   

17.
Anisotropic pairing between fermion species with different Fermi momenta opens two-dimensional areas of gapless excitations, thus producing a spatially homogeneous state with coexisting superfluid and normal fluids. This breached pairing state is stable and robust for arbitrarily small mismatch and weak p-wave coupling.  相似文献   

18.
The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern.  相似文献   

19.
A topological superconductor (TSC) is characterized by the topologically protected gapless surface state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has not yet been discovered, the doped topological insulator Cu(x)Bi(2)Se(3), which superconducts below ~3 K, has been predicted to possess a topological superconducting state. We report that the point-contact spectra on the cleaved surface of superconducting Cu(x)Bi(2)Se(3) present a zero-bias conductance peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all possible superconducting states help us conclude that this ZBCP is due to Majorana fermions and gives evidence for a topological superconductivity in Cu(x)Bi(2)Se(3). In addition, we found an unusual pseudogap that develops below ~20 K and coexists with the topological superconducting state.  相似文献   

20.
Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster approximation we study superconductivity in the two-dimensional Hubbard model. We find that pairing is indeed driven by the kinetic energy and that superconductivity evolves from an unconventional state with partial spin-charge separation, to a superconducting state with quasiparticle excitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号