首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface spin-wave modes are calculated for (100) surface of simple cubic structure. An isotropic part as well as an anisotropic part are introduced in the spin Hamiltonian. The anisotropic factor is allowed to vary on the first two surface layers. Dispersion curves are derived by a Green function formalism.The authors are indebted to Dr A. P. Legrand for his help in numerical calculations and to Dr J. Korringa for his continuous encouragement and suggestions.  相似文献   

2.
The formation of multiple nuclear spin echo signals has been studied in thin ferromagnetic polycrystalline films of 3d-metals and their alloys with induced anisotropy at temperatures between 2.2 and 300 K using two-pulse and three-pulse excitation. A method is proposed for the experimental determination of the contributions made by different mechanisms to the formation of spin-echo signals in magnets with strongly inhomogeneous Zeeman and quadrupole interactions. It is shown that in ferromagnets with a high rf field gain at the nucleus, the frequency modulation mechanism has a substantial influence in observations of nuclear spin-echo signals at nuclei with a high magnetic moment, even at liquid-helium temperatures. Fiz. Tverd. Tela (St. Petersburg) 40, 1056–1061 (June 1998)  相似文献   

3.
The spin wave instability generated by parallel pumping in a tangentially magnetized ferromagnetic film is considered, with simultaneous regard for both the dipole and exchange fields. A dispersion equation and some expressions for the critical microwave threshold of the spin wave parametric excitation have been obtained. The dependence of the critical field on the magnetizing field has an unusually oscillating character. This is connected both with the discreteness of spin wave spectrum and the peculiarities of spin wave polarization in a tangentially magnetized film.  相似文献   

4.
We measure the propagation of spatially localized spin waves in NiFe thin films through local inductive detection of the dynamic magnetization. A pulsed magnetic field excites a linear superposition of spin wave modes with a distribution that is predominantly driven by the spatial dependence of the in-plane excitation field. The results of numerical micromagnetic calculations exhibit excellent agreement with experiment and show that a comprehensive account of spatial nonuniformity and propagation is necessary to accurately measure the intrinsic damping rate.  相似文献   

5.
In this paper spin excitations in spherical ferromagnetic nanoshells are investigated. The magnetic dipoledipole interaction, the exchange interaction and the anisotropy effects are taken into consideration. For such spin excitations, an equation for the magnetic potential perturbation is obtained. For a nanoshell that is thin compared to its size, the dispersion relation for nonzero spin excitation modes and the only possible frequency for zero-mode spin excitations are found. Limitations on the mode numbers are derived.  相似文献   

6.
彭菊  郁华玲  左芬 《中国物理 B》2010,19(12):127402-127402
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot(QD) ring,which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot.It is found that the electronic current and spin current are sensitive to the systematic parameters.The interdot spin-flip term does not play a leading role in causing electronic and spin currents.Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current.Moreover,the spin-orbital interaction suppresses the nonlocal Andreev reflection,so we cannot obtain the pure spin current.  相似文献   

7.
The current-induced spin accumulation is calculated for a 1D lateral semiconductor superlattice with spin–orbit interaction of the Rashba and Dresselhaus type. Due to its particular symmetry, the Rashba interaction alone only leads to an in-plane component of the magnetization transverse to the applied electric field. When in addition a Dresselhaus contribution is present, this symmetry is lifted, and all components of the magnetization are induced by the electric field. Based on the density-matrix approach, the induced spin polarization is determined as a function of external in-plane electric and magnetic fields.  相似文献   

8.
Ultrafast spin dynamics in ferromagnetic nickel   总被引:1,自引:0,他引:1  
  相似文献   

9.
We study the spin transport in bilayer graphene nanoribbons (BGNs) in the presence of Rashba spin-orbit interaction (SOI) and external gate voltages. It is found that the spin polarization can be significantly enhanced by the interlayer asymmetry or longitudinal mirror asymmetry produced by external gate voltages. Rashba SOI alone in BGNs can only generate current with spin polarization along the in-plane y direction, but the polarization components can be found along the x, y and z directions when a gate voltage is applied. High spin polarization with flexible orientation is obtained in the proposed device. Our findings shed new light on the generation of highly spin-polarized current in BGNs without external magnetic fields, which could have useful applications in spintronics device design.  相似文献   

10.
We discuss the results of a theoretical analysis of the waveguide interaction of light and spin waves. Both linear and quadratic magnetooptical effects are taken into account. The features of the interaction are considered for the three principal types of spin waves: waves in a normally magnetized ferromagnetic film, and longitudinal and transverse waves in a tangentially magnetized film. Isotropic and anisotropic diffraction processes are considered. Numerical estimates of the intensity and frequency properties of the diffraction scattering are given for a number of situations of practical interest. The effect of a strong constant magnetic field on the interaction of light and spin waves is considered.Translated from Izvestiya Vyssnikh Uchebnykh Zavednii, Fizika, No. 4, pp. 5–31, April, 1989.  相似文献   

11.
The kinetics of remagnetization after magnetic field switching was studied by the magneto-optic visualization technique in the bilayer hybrid structure composed of exchange-coupled FeNi and FeMn films. It was observed that not only the static but the dynamic characteristics of remagnetization as well depend on the polarity of a field applied along the direction of easy magnetization. The rate of the process was found to be exponentially dependent on the field strength in both directions, but the rate varied by factors of 10 upon inversion of the field. It was shown that this difference is the consequence of variation of both the time of domains nucleation and the velocity of domain walls motion.  相似文献   

12.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   

13.
A new thermomagnetic effect in a ferromagnetic film is discussed. When a temperature gradient is established along the x axis in a ferromagnetic sample, a transverse electric field arises in the same plane as the spontaneous-magnetization vector (in the case H = 0, where H is the external magnetic field). A phenomenological expression is given for the transverse electric field as a function of the square of the magnetization. Theory is given for the Nernst-Ettingshausen effect due to the spin-orbit interaction in a ferromagnetic film in the effectivemass approximation, and the Nernst-Ettingshausen constant is derived. The calculation is carried out by the density-matrix method derived by Kohn and Luttinger.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii Fizika, No. 11, pp. 28–32, November, 1969.  相似文献   

14.
We analytically obtained the Schmidt decomposition of the entangled state between the pseudo spin and the true spin in graphene with Rashba spin–orbit coupling. The entangled state has the standard form of the Bell state, where the SU(2) spin symmetry is broken. These states can be explicitly expressed as the superposition of two nonorthogonal, but mirror symmetrical spin states entangled with the pseudo spin states. Because of the closely locking between the pseudo spin and the true spin, it is found that the orbit curve in the spin-polarization parameter space for the fixed equi-energy contour around Dirac points has the same shape as the δk-contour. Due to the spin–orbit coupling that cause the topological transition in the local geometry of the dispersion relation, the new equi-energy contours around the new emergent Dirac Points can be obtained by squeezing the one around the original Dirac point. The spin texture in the momentum space around the Dirac points is analyzed under the Rashba spin–orbit interaction and it is found that the orientation of the spin polarization at each crystal momentum k is independent of the Rashba coupling strength.  相似文献   

15.
We introduce a discrete model describing the motion of a zigzag domain wall in a disordered ferromagnet with in-plane magnetization, driven by an external magnetic field. The main ingredients are dipolar interactions and anisotropy. We investigate the dynamic hysteresis by analyzing the effects of external field frequency on the coercive field by Monte Carlo simulations. Our results are in good agreement with experiments on Fe/GaAs films reported in literature, and we conclude that dynamic hysteresis in this case can be explained by a single propagating domain wall model without invoking domain nucleation.  相似文献   

16.
17.
The magnetic properties of thin ferromagnetic films are studied taking into account the magnetic anisotropy term in the Hamiltonian. In the second approximation equations are obtained for the magnetization of the monatomic layers parallel to the surface of the thin film. From these equations one obtains the Curie temperature, which depends on the thickness of the thin film and the ratio a between the anisotropy constant and the exchange energy between two neighbours. A value can be chosen for such that the thin film becomes ferromagnetic only for a thickness greater than a definite value and in this manner the theoretical results can be fitted to the experimental data. The situation in cobalt thin films is dealt with in particular.
. , . , . , , - , . , , .


The author extends his thanks to the research workers of CIFA 1 as well as to Dr. L. Valenta for information on the same subject.  相似文献   

18.
By a Green function approach, spin waves in a surface-rearranged ferromagnetic thin film are derived both analytically and numerically. Heisenberg exchange, bulk and surface anisotropy between nearest neighbors and external magnetic field are taken into account for an sc film with {001} surfaces. Because of the anisotropies, the dynamical matrix defined from the Green function equations is not Hermitian, so we generalize the Bogoliubov canonical transformation to derive the spin wave spectrum. The spin waves propagating inside the film result from the superposition of two sine or hyperbolic sine waves. The amplitude and polarization of spin waves are shown to be quite sensitive to the details of the surface rearrangements, whereas spin wave energies are not so sensitive to such rerrangements, except when soft modes occur in the unrearranged configuration. In that case, we show that when the surface rearrangement is taken into account, soft modes disappear in the spin wave spectrum.  相似文献   

19.
Based on the Green’s function technique and the equation of motion approach,this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs),in which Rashba spin-orbit interaction is taken into account.Rashba spin-orbit interaction contributions,even in a magnetic field,are exhibited obviously in the double quantum dots system for the thermoelectric effect.The periodic oscillation of thermopower can be controlled by tunning the Rashba spin-orbit interaction induced phase.The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.  相似文献   

20.
A spin accumulation effect (SAE) is induced in a semiconductor nanoring with Rashba spin orbit interaction and pierced by a magnetic flux. We show that when the sample is not perfectly symmetric, the profile of the SAE can be highly inhomogeneous along specific orientations. In particular, we analyze the anisotropy generated in the angular profile by a finite eccentricity. We discuss the feasibility of detecting the effect with usual magneto optical techniques for a number of electrons and values of magnetic fluxes experimentally accessible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号