首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lu Yang 《中国物理 B》2021,30(11):117504-117504
We study the possibility to realize a Majorana zero mode that is robust and may be easily manipulated for braiding in quantum computing in the ground state of the Kitaev model in this work. To achieve this we first apply a uniform [111] magnetic field to the gapless Kitaev model and turn the Kitaev model to an effective p+ip topological superconductor of spinons. We then study possible vortex binding in such system to a topologically trivial spot in the ground state. We consider two cases in the system: one is a vacancy and the other is a fully polarized spin. We show that in both cases, the system binds a vortex with the defect and a robust Majorana zero mode in the ground state at a weak uniform [111] magnetic field. The distribution and asymptotic behavior of these Majorana zero modes are studied. The Majorana zero modes in both cases decay exponentially in space, and are robust against local perturbations and other Majorana zero modes far away, which makes them promising candidates for braiding in topological quantum computing.  相似文献   

2.
封晓勇  张广铭  向涛 《物理》2007,36(7):511-515
文章通过在一种准一维路径上引入自旋算符的约当-维格纳(Jordan—Wigner)变换,证明了Kitaev自旋模型完全等价于一个不含任何非物理自由度的自由Majorana费米子模型。通过对偶变换,进一步证明了这个系统中存在的量子相变可用非定域的拓扑序参量来描述;并且,这些非定域的拓扑序参量在对偶空间变成为定域的朗道类型的序参量。文章作者的工作揭示了传统的量子相变和拓扑量子相变的内在关系,扩展了朗道二级相变理论的适用范围。  相似文献   

3.
In this paper,we study two quasi-one-dimensional(1 D) Kitaev models with ladder-like and tube-like spatial structures,respectively.Our results provide the phase diagrams and explicit expressions of the Majorana zero modes.The topological phase diagrams are obtained by decomposing the topological invariants and the topological conditions for topologically nontrivial phases are given precisely.For systems which belongs to topological class BDI,we obtain the regions in the phase diagrams where the topological numbers show even-odd effect.For the Kitaev tube model a phase factor induced by the magnetic flux in the axial direction of the tube is introduced to alter the classification of the tube Hamiltonian from class BDI to D.The Kitaev tube of class D is characterized by the Z_2 index when the number of chains is odd while 0,1,2 when the number of chains is even.The phase diagrams show periodic behaviors with respect to the magnetic flux.The bulk-boundary correspondence is demonstrated by the observations that the topological conditions for the bulk topological invariant to take nontrivial values are precisely those for the existence of the Majorana zero modes.  相似文献   

4.
We study the effect of a half wave rectified sinusoidal electromagnetic (EM) wave on the Kitaev honeycomb model with an additional magneto-electric coupling term arising due to induced polarization of the bonds. Within the framework of Floquet analysis, we show that merging of a pair of Dirac points in the gapless region of the Kitaev model leading to a semi-Dirac spectrum is indeed possible by externally varying the amplitude and the phase of the EM field.  相似文献   

5.
We study the gapped phase of the Kitaev model on the honeycomb lattice using perturbative continuous unitary transformations. The effective low-energy Hamiltonian is found to be an extended toric code with interacting anyons. High-energy excitations are emerging free fermions which are composed of hard-core bosons with an attached string of spin operators. The excitation spectrum is mapped onto that of a single particle hopping on a square lattice in a magnetic field. We also illustrate how to compute correlation functions in this framework. The present approach yields analytical perturbative results in the thermodynamical limit without using the Majorana or the Jordan-Wigner fermionization initially proposed to solve this problem.  相似文献   

6.
We investigate the duality structure of quantum lattice systems with topological order, a collective order also appearing in fractional quantum Hall systems. We define electromagnetic (EM) duality for all of Kitaev?s quantum double models based on discrete gauge theories with Abelian and non-Abelian groups, and identify its natural habitat as a new class of topological models based on Hopf algebras. We interpret these as extended string-net models, whereupon Levin and Wen?s string-nets, which describe all intrinsic topological orders on the lattice with parity and time-reversal invariance, arise as magnetic and electric projections of the extended models. We conjecture that all string-net models can be extended in an analogous way, using more general algebraic and tensor-categorical structures, such that EM duality continues to hold. We also identify this EM duality with an invertible domain wall. Physical applications include topology measurements in the form of pairs of dual tensor networks.  相似文献   

7.
We propose a scheme to demonstrate fractional statistics of anyons in an exactly solvable lattice model proposed by Kitaev that involves four-body interactions. The required many-body ground state, as well as the anyon excitations and their braiding operations, can be conveniently realized through dynamic laser manipulation of cold atoms in an optical lattice. Because of the perfect localization of anyons in this model, we show that a quantum circuit with only six qubits is enough for demonstration of the basic braiding statistics of anyons. This opens up the immediate possibility of proof-of-principle experiments with trapped ions, photons, or nuclear magnetic resonance systems.  相似文献   

8.
We have introduced a novel Majorana representation of S=1/2 spins using the Jordan-Wigner transformation and have shown that a generalized spin model of Kitaev defined on a brick-wall lattice is equivalent to a model of noninteracting Majorana fermions with Z2 gauge fields without redundant degrees of freedom. The quantum phase transitions of the system at zero temperature are found to be of topological type and can be characterized by nonlocal string order parameters (SOP). In appropriate dual representations, these SOP become local order parameters and the basic concept of Landau theory of continuous phase transition can be applied.  相似文献   

9.
We consider a ferrofluid system consisting of magnetic particles interacting with a magnetic dipole–dipole interaction. We study the strong magnetic field regime where all magnetic dipoles are completely polarized in the direction of the magnetic field. We introduce a lattice gas model that serves to describe space ordering phenomena in such systems. It is found that, within mean field theory, this model predicts a second order phase transition to a phase with inhomogeneous lamellar-like ordering below a certain critical temperature.  相似文献   

10.
It has been noted that the Kitaev chain, a p-wave superconductor with nearest-neighbor pairing amplitude equal to the hopping term Δ=tΔ=t, and chemical potential μ=0μ=0, can be mapped into a nearest neighbor Ising model via a Jordan–Wigner transformation. Starting from the explicit eigenstates of the open Kitaev chain in terms of the original fermion operators, we elaborate that despite this formal equivalence the models are physically inequivalent, and show how the topological phase in the Kitaev chain maps into conventional order in the Ising model.  相似文献   

11.
We investigate electron transport inside a ring system composed of a quantum dot (QD) coupled to two Majorana bound states confined at the ends of a one-dimensional topological superconductor nanowire. By tuning the magnetic flux threading through the ring, the model system we consider can be switched into states with or without zero-energy modes when the nanowire is in its topological phase. We find that the Fano profile in the conductance spectrum due to the interference between bound and continuum states exhibits markedly different features for these two different situations, which consequently can be used to detect the Majorana zero-energy mode. Most interestingly, as a periodic function of magnetic flux, the conductance shows 2π periodicity when the two Majorana bound states are nonoverlapping (as in an infinitely long nanowire) but displays 4π periodicity when the overlapping becomes nonzero (as in a finite length nanowire). We map the model system into a QD–Kitaev ring in the Majorana fermion representation and affirm these different characteristics by checking the energy spectrum.  相似文献   

12.
We investigate Majorana modes of number-conserving fermionic superfluids from both basic physics principles, and concrete models perspectives. After reviewing a criterion for establishing topological superfluidity in interacting systems, based on many-body fermionic parity switches, we reveal the emergence of zero-energy modes anticommuting with fermionic parity. Those many-body Majorana modes are constructed as coherent superpositions of states with different number of fermions. While realization of Majorana modes beyond mean field is plausible, we show that the challenge to quantum-control them is compounded by particle-conservation, and more realistic protocols will have to balance engineering needs with astringent constraints coming from superselection rules. Majorana modes in number-conserving systems are the result of a peculiar interplay between quantum statistics, fermionic parity, and an unusual form of spontaneous symmetry breaking. We test these ideas on the Richardson–Gaudin–Kitaev chain, a number-conserving model solvable by way of the algebraic Bethe ansatz, and equivalent in mean field to a long-range Kitaev chain.  相似文献   

13.
The Heisenberg-Kitaev(HK) model on various lattices has attracted a lot of attention because it may lead to exotic states such as quantum spin liquid and topological orders.The rare-earth-based kagome lattice(KL) compounds Mg2RE3Sb3O14(RE=Gd,Er) and(RE=Nd) have q=0,120° order and canted ferromagnetic(CFM) order,respectively.Interestingly,the HK model on the KL has the same ground state long-range orders.In the theoretical phase diagram,the CFM phase re...  相似文献   

14.
In this paper we propose an exactly solvable model of a topological insulator defined on a spin- \(\tfrac{1}{2}\) square decorated lattice. Itinerant fermions defined in the framework of the Haldane model interact via the Kitaev interaction with spin- \(\tfrac{1}{2}\) Kitaev sublattice. The presented model, whose ground state is a non-trivial topological phase, is solved exactly. We have found out that various phase transitions without gap closing at the topological phase transition point outline the separate states with different topological numbers. We provide a detailed analysis of the model’s ground-state phase diagram and demonstrate how quantum phase transitions between topological states arise. We have found that the states with both the same and different topological numbers are all separated by the quantum phase transition without gap closing. The transition between topological phases is accompanied by a rearrangement of the spin subsystem’s spectrum from band to flat-band states.  相似文献   

15.
We analyze the effect of local spin operators in the Kitaev model on the honeycomb lattice. We show, in perturbation around the isolated-dimer limit, that they create Abelian anyons together with fermionic excitations which are likely to play a role in experiments. We derive the explicit form of the operators creating and moving Abelian anyons without creating fermions and show that it involves multispin operations. Finally, the important experimental constraints stemming from our results are discussed.  相似文献   

16.
We present a detailed study on the magnetic order in the undoped mother compound LaFeAsO of the recently discovered Fe-based superconductor LaFeAsO1-xFx. In particular, we present local probe measurements of the magnetic properties of LaFeAsO by means of 57Fe M?ssbauer spectroscopy and muon-spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5)muB at the iron site below T(N)=138 K, well separated from a structural phase transition at T(S)=156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T(N) are reproduced.  相似文献   

17.
We report polarized and unpolarized neutron scattering measurements of the magnetic order in single crystals of Na0.5CoO2. Our data indicate that below TN=88 K the spins form a novel antiferromagnetic pattern within the CoO2 planes, consisting of alternating rows of ordered and nonordered Co ions. The domains of magnetic order appear to be closely coupled to the domains of Na ion order, consistent with such a twofold symmetric spin arrangement. Magnetoresistance and anisotropic susceptibility measurements further support this model for the electronic ground state.  相似文献   

18.
An important characteristic of topological band insulators is the necessary presence of in-gap edge states on the sample boundary. We utilize this fact to show that when the boundary is reconnected with a twist, there are always zero-energy defect states. This provides a natural connection among novel defects in the two-dimensional p{x}+ip{y} superconductor, the Kitaev model, the fractional quantum Hall effect, and the one-dimensional domain wall of polyacetylene.  相似文献   

19.
We show that for a d-dimensional model in which a quench with a rate tau(-1) takes the system across a (d-m)-dimensional critical surface, the defect density scales as n approximately 1/tau(mnu/(znu+1)), where nu and z are the correlation length and dynamical critical exponents characterizing the critical surface. We explicitly demonstrate that the Kitaev model provides an example of such a scaling with d = 2 and m = nu = z = 1. We also provide the first example of an exact calculation of some multispin correlation functions for a two-dimensional model that can be used to determine the correlation between the defects. We suggest possible experiments to test our theory.  相似文献   

20.
Bonzom  V.  Nador  V.  Tanasa  A. 《Letters in Mathematical Physics》2019,109(12):2611-2624
Letters in Mathematical Physics - A crucial result on the celebrated Sachdev–Ye–Kitaev model is that its large N limit is dominated by melonic graphs. In this letter, we offer a...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号