首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We theoretically investigate the propagation of a weak probe laser pulse in a triangular quantum dot molecules scheme based on the tunneling induced transparency. We find that the ultraslow optical solitons can be realized due to the destructive quantum interference induced by the interdot tunneling coupling which can be adjusted by the gate voltage appropriately. This work may provide practical applications such as electro-optic modulated devices and other information processes in semiconductor quantum dots structure.  相似文献   

2.
We present a cross-sectional scanning tunneling microscopy (X-STM) investigation of InAs quantum dots in a GaAs matrix. The structures were grown by molecular beam epitaxy (MBE) at a low growth rate of 0.01 ML/s and consist of five layers of uncoupled quantum dot structures. Detailed STM images with atomic resolution show that the dots consist of an InGaAs alloy and that the indium content in the dot increases towards the top. The analysis of the height versus base-length relation obtained from cross-sectional images of the dots shows that the shape of the dots resembles that of a truncated pyramid and that the square base is oriented along the [010] and [100] directions. Using scanning tunneling spectroscopy (STS) we determined the onset for electron tunneling into the conduction and out of the valence band, both in the quantum dots and in the surrounding GaAs matrix. We found equal voltages for tunneling out of the valence band in GaAs or InGaAs whereas tunneling into GaAs occurred at higher voltages than in InGaAs.  相似文献   

3.
Resonant tunneling in an open mesoscopic quantum dot is proposed as a vehicle to realize a tunable Fermi-edge resonance with variable coupling strength. We solve the x-ray edge problem for a generic nonseparable scatterer and apply it to describe tunneling in a quantum dot. The tunneling current power law exponent is linked to the S matrix of the dot. The control of scattering by varying the dot shape and coupling to the leads allows us to explore a wide range of exponents. The sensitivity of mesoscopic coherence to the Wigner-Dyson ensemble symmetry is replicated in the Fermi-edge singularity.  相似文献   

4.
We report on the fabrication and the characterization of quantum dot transistors incorporating a single self-assembled quantum dot. The current–voltage characteristics exhibit clear staircase structures at room temperature. They are attributed to electron tunneling through the quantized energy levels of a single quantum dot.  相似文献   

5.
We present measurements of the rates for an electron to tunnel on and off a quantum dot, obtained using a quantum point contact charge sensor. The tunnel rates show exponential dependence on drain-source bias and plunger gate voltages. The tunneling process is shown to be elastic, and a model describing tunneling in terms of the dot energy relative to the height of the tunnel barrier quantitatively describes the measurements.  相似文献   

6.
Taking account of the electron--electron (hole) and electron--hole interactions, the tunneling processes of the main quantum dot (QD) Coulomb-coupled with a second quantum dot embedded in n--n junction have been investigated. The eighteen resonance mechanisms involved in the tunneling processes of the system have been identified. It is found that the tunneling current depends sensitively on the electron occupation number in the second quantum dot. When the electron occupation number in the second dot is tiny, both the tunneling current peaks and the occupation number plateaus in the main QD are determined by the intra-resonance mechanism. The increase of the electron occupation number in the second dot makes the inter-resonance mechanism participate in the transport processes. The competition between the inter and intra resonance mechanisms persists until the electron occupation number in the second dot reaches around unity, leading to the consequence that the inter-resonance mechanisms completely dominate the tunneling processes.  相似文献   

7.
The time evolution of the quantum entropy in a coherently driven triple quantum dot molecule is investigated. The entanglement of the quantum dot molecule and its spontaneous emission field is coherently controlled by the gate voltage and the rate of an incoherent pump field. The degree of entanglement between a triple quantum dot molecule and its spontaneous emission fields is decreased by increasing the tunneling parameter.  相似文献   

8.
Quantum dot structures designed for multi-color infrared detection and high temperature (or room temperature) operation are demonstrated. A novel approach, tunneling quantum dot (T-QD), was successfully demonstrated with a detector that can be operated at room temperature due to the reduction of the dark current by blocking barriers incorporated into the structure. Photoexcited carriers are selectively collected from InGaAs quantum dots by resonant tunneling, while the dark current is blocked by AlGaAs/InGaAs tunneling barriers placed in the structure. A two-color tunneling-quantum dot infrared photodetector (T-QDIP) with photoresponse peaks at 6 μm and 17 μm operating at room temperature will be discussed. Furthermore, the idea can be used to develop terahertz T-QD detectors operating at high temperatures. Successful results obtained for a T-QDIP designed for THz operations are presented. Another approach, bi-layer quantum dot, uses two layers of InAs quantum dots (QDs) with different sizes separated by a thin GaAs layer. The detector response was observed at three distinct wavelengths in short-, mid-, and far-infrared regions (5.6, 8.0, and 23.0 μm). Based on theoretical calculations, photoluminescence and infrared spectral measurements, the 5.6 and 23.0 μm peaks are connected to the states in smaller QDs in the structure. The narrow peaks emphasize the uniform size distribution of QDs grown by molecular beam epitaxy. These detectors can be employed in numerous applications such as environmental monitoring, spectroscopy, medical diagnosis, battlefield-imaging, space astronomy applications, mine detection, and remote-sensing.  相似文献   

9.
We report the use of single quantum dot structures as tips on a scanning tunneling microscope (STM). A single quantum dot structure with a diameter of less than 200 nm and a height of 2 μm was fabricated by reactive ion etching. This dot was placed on a 40 μm-high mesa and mounted on the tip of a STM. The topography of large structures such as quantum wires or gold test substrates is clearly resolved with such a tip. To check the transport properties of the tip, quantum dot arrays were fabricated on resonant tunneling double barrier structures using the same process parameters. Conventional tunneling spectroscopy clearly resolved the 0D states in our samples. Using a metal substrate as second electrode such STM tips can be used to perform high resolution energy spectroscopy on single dots and free standing wire structures.  相似文献   

10.
We analyze the electroluminescence spectrum of an STM-tip-induced quantum dot in a GaAs surface layer. A flexible model has been developed, that combines analytical and numerical methods and describes the key features of many-particle states in the STM-tip-induced quantum dot. The dot is characterized by its depth and lateral width, which are experimentally controlled by the bias and the tunneling current. We find, in agreement with experiment, that increasing voltage on the STM-tip results in a red shift of the electroluminescence peaks, while the peak positions as a function of the electron tunneling current through the STM-tip reveal a blue shift.  相似文献   

11.
We analyze the frequency-dependent noise of a current through a quantum dot which is coupled to Fermi leads and which is in the Coulomb blockade regime. We show that the asymmetric shot noise, as a function of detection frequency, shows steps and becomes super-Poissonian. This provides experimental access to the quantum fluctuations of the current. We present an exact calculation of the noise for a single dot level and a perturbative evaluation of the noise in Born approximation (sequential tunneling regime but without Markov approximation) for the general case of many levels with charging interaction.  相似文献   

12.
Transmission and reflection of an electromagnetic pulse through a dielectric slab doped with the quantum dot molecules are investigated. It is shown that the transmission and reflection coefficients depend on the inter-dot tunneling effect and can be simply controlled by applying a gate voltage without any changing in the refractive index or thickness of the slab. Such simple controlling prepares an active beam splitter which can be used in all optical switching, optical limiting, and other optical systems.  相似文献   

13.
Resonant tunneling through two identical potential barriers renders them transparent, as particle trajectories interfere coherently. Here we realize resonant tunneling in a quantum dot (QD), and show that detection of electron trajectories renders the dot nearly insulating. Measurements were made in the integer quantum Hall regime, with the tunneling electrons in an inner edge channel coupled to detector electrons in a neighboring outer channel, which was partitioned. Quantitative analysis indicates that just a few detector electrons completely dephase the QD.  相似文献   

14.
Transport spectroscopy reveals the microscopic features of few-electron quantum dots which justify the nameartificial atoms. New physics evolve when two quantum dots are coupled by a tunneling barrier. We study, both theoretically and experimentally, the tunneling spectroscopy on a double quantum dot. A detailed lineshape analysis of the conductance resonances proves that off-resonant coherent interdot tunneling governs transport through this system, while tunneling into the double quantum dot occurs resonantly. This coherent interdot tunneling witnesses the evolution of a delocalized electronic state which can be compared to a valence electron of thisartificial molecule.  相似文献   

15.
《Physics letters. A》2020,384(3):126076
Two main mechanisms dictate the tunneling process in a double quantum dot: overlap of excited wave functions, effectively described as a tunneling rate, and phonon-assisted tunneling. In this paper, we study different regimes of tunneling that arise from the competition between these two mechanisms in a double quantum dot molecule immersed in a unimodal optical cavity. We show how such regimes affect the mean number of excitations in each quantum dot and in the cavity, the spectroscopic resolution and emission peaks of the photoluminescence spectrum, and the second-order coherence function which is an indicator of the quantumness of emitted light from the cavity.  相似文献   

16.
Electronic transport through a one-dimensional quantum dot array is theoretically studied. In such a system both electron reservoirs of continuum states couple with the individual component quantum dots of the array arbitrarily. When there are some dangling quantum dots in the array outside the dot(s) contacting the leads, the electron tunneling through the quantum dot array is wholly forbidden if the electron energy is just equal to the molecular energy levels of the dangling quantum dots, which is called as antiresonance of electron tunneling. Accordingly, when the chemical potential of the reservoir electrons is aligned with the electron levels of all quantum dots, the linear conductance at zero temperature vanishes if there are odd number dangling quantum dots; Otherwise, it is equal to 2e2/h due to resonant tunneling if the total number of quantum dots in the array is odd. This odd–even parity is independent of the interdot and the lead–dot coupling strength.  相似文献   

17.
Employing two different growth methods: standard molecular beam epitaxy (MBE) and low-temperature atomic layer epitaxy (ALE) with subsequent annealing, we have obtained high-quality quantum dot structures consisting of CdSe embedded in ZnSe. Single dot emission lines are observed in micro-luminescence. The samples have been investigated by further optical methods including time-resolved photoluminescence under resonant excitation at 4.2 K. Distinct properties of systems with three-dimensional confinement are observed such as the suppression of the interaction between isolated quantum dots (QDs). In standard quantum wells tunneling/hopping processes generally lead to a pronounced red shift of the luminescence over time due to a lateral localization of excitons in potential fluctuations. A much less pronounced red shift is observed for the QDs reflecting only the different lifetimes of single dots and higher excited states. The red shift completely vanishes under resonant excitation that selectively excites only a few QDs of the ensemble in the layer. Typical behaviour is also observed from the halfwidth of the quantum dot emission.  相似文献   

18.
The field and temperature dependence of the probability of two-dimensional dissipative tunneling is studied in the framework of one-instanton approximation for a model double-well oscillator potential in an external electric field at finite temperature with account for the influence of two local phonon modes for quantum dots in a system of a combined atomic force and a scanning tunneling microscope. It is demonstrated that in the mode of synchronous parallel transfer of tunneling particles from the cantilever tip to the quantum dot the two local phonon modes result in the occurrence of two stable peaks in the curve of the 2D dissipative tunneling probability as a function of the field. Qualitative comparison of the theoretical curve in the limit of weak dissociation and the experimental current–voltage characteristic for quantum dots that grow from colloidal gold under a cantilever tip at the initial stage of quantum-dot formation when the quantum dot size does not exceed 10 nm is performed. It is established that one of the two stable peaks that correspond to interaction of tunneling particles with two local phonon modes in the temperature dependence of the 2D dissipative tunneling probability can be split in two, which corresponds to the tunneling channel interference mechanism. It is found that the theoretically predicted and experimentally observed mode of quantum beats occurs near the bifurcation point.  相似文献   

19.
The time-dependent electron transport through a quantum dot with the additional over-dot (bridge) tunneling channel within the evolution operator technique has been studied. The microwave field applied to the leads and quantum dot has been considered and influence of the time-dependent shift of corresponding energy levels on the quantum dot charge and current flowing in the system, its time-averaged values and derivatives of the average current with respect to the gate and source–drain bias voltages have been investigated. The influence of the over-dot tunneling channel on the photon-assisted tunneling has been also studied.  相似文献   

20.
原子通过激光冷却技术能够被制备在低温状态,这时冷原子云会展现出量子力学的波动性.研究了一束冷原子入射到一个蓝失谐的激光束上所表现出的量子力学隧穿效应.蓝失谐的激光束相对于冷原子而言等效于一个量子力学势垒.根据二能级模型,在理论上分析了具有内部结构的原子矢量物质波穿过激光束的量子力学反射与透射,特别是对原子穿越激光束所需的时间——量子隧穿时间进行了详细的研究.量子力学波动性使得冷原子穿越一个激光束时明显地展现出与经典粒子(热原子)不同的结果. 关键词: 冷原子 原子光学 量子隧穿  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号