首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The dynamics of translocation of polymer molecules through nanopores is investigated via molecular dynamics. We find that an off-lattice minimalist model of the system is sufficient to reproduce quantitatively all the experimentally observed trends and scaling behavior. Specifically, simulations show (i) two translocation regimes depending on the ratio of pore and polymer length, (ii) two different regimes for the probability of translocation depending on applied voltage, (iii) an exponential dependence of translocation velocity upon applied voltage, and (iv) an exponential decrease of the translocation time with temperature. We also propose a simple theoretical explanation of each of the observed trends within a free energy landscape framework.  相似文献   

4.
The passage of a polymer through a narrow pore is associated with the crossing of a significant free energy barrier. Both in nature and in single molecule experiments the polymer is typically driven through the pore. We here address two such driving modes: (i) the driving by binding proteins that prevent (partial) back-sliding through the pore; and (ii) the driving by a trans-membrane force. In case (i) we derive the effective force and show finite size effects due to the size of the binding proteins. In case (ii) we demonstrate the crossover from a slow, equilibrium driving to a non-equilibrium behaviour at fast driving.  相似文献   

5.
The cooperative translocation dynamics of two complementary single-stranded DNA chains through two nanopores located in a membrane is investigated theoretically. The translocation process is considered to be quasi-equilibrium, and then under the limit of slow dynamics the average translocation times are numerically presented under different conditions. It is shown that the effects of the chemical potential gradient, the recombination energy and the distance between the two nanopores on the cooperative translocation are significant. The present model predicts that the cooperative translocation of such two chains can shorten the translocation time, reduce the backward motion and thus improve the translocation efficiency.  相似文献   

6.
Control of ion transport and fluid flow through nanofluidic devices is of primary importance for energy storage and conversion, drug delivery and a wide range of biological processes. Recent development of nanotechnology, synthesis techniques, purification technologies, and experiment have led to rapid advances in simulation and modeling studies on ion transport properties. In this review, the applications of Poisson–Nernst–Plank(PNP) equations in analyzing transport properties are presented. The molecular dynamics(MD) studies of transport properties of ion and fluidic flow through nanofluidic devices are reported as well.  相似文献   

7.
We investigate the dynamics of DNA translocation through a nanopore using 2D Langevin dynamics simulations, focusing on the dependence of the translocation dynamics on the details of DNA sequences. The DNA molecules studied in this work are built from two types of bases A and C, which have been shown previously to have different interactions with the pore. We study DNA with repeating blocks A(n)C(n) for various values of n and find that the translocation time depends strongly on the block length 2n as well as on the orientation of which base enters the pore first. Thus, we demonstrate that the measurement of translocation dynamics of DNA through a nanopore can yield detailed information about its structure. We have also found that the periodicity of the block sequences is contained in the periodicity of the residence time of the individual nucleotides inside the pore.  相似文献   

8.
The successful design of nanofluidic devices for the manipulation of biopolymers requires an understanding of how the predictions of soft condensed matter physics scale with device dimensions. Here we present measurements of DNA extended in nanochannels and show that below a critical width roughly twice the persistence length there is a crossover in the polymer physics.  相似文献   

9.
We investigated compression and ensuing expansion of long DNA molecules confined in nanochannels. Transverse confinement of DNA molecules in the nanofluidic channels leads to elongation of their unconstrained equilibrium configuration. The extended molecules were compressed by electrophoretically driving them into porelike constrictions inside the nanochannels. When the electric field was turned off, the DNA strands expanded. This expansion, the dynamics of which has not previously been observable in artificial systems, is explained by a model that is a variation of de Gennes's polymer model.  相似文献   

10.
Recent experiments of translocation of double-stranded DNA through nanopores [M. Wanunu et al., Nature Nanotech. 5, 160 (2009)] reveal that the DNA capture rate can be significantly influenced by a salt gradient across the pore. We show that osmotic flow combined with electrophoretic effects can quantitatively explain the experimental data on the salt-gradient dependence of the capture rate.  相似文献   

11.
Molecular dynamics simulations are used to study the equilibrium distribution of monovalent ions in a nanopore connecting two water reservoirs separated by a membrane, both for the empty pore and that with a single stranded DNA molecule inside. In the presence of DNA, the counterions condense on the stretched macromolecule effectively neutralizing it, and nearly complete depletion of coions from the pore is observed. The implications of our results for experiments on DNA translocation through alpha-hemolysin nanopores are discussed.  相似文献   

12.
In this paper, we propose a new optical detection scheme for nanopore-based DNA sequencing with high resolution towards eventual base identification. We use ultraviolet light for excitation of a fluorescent probe attached to DNA and a nanopore in the silicon membrane that has a significantly large refractive index and an extinction coefficient at ultraviolet wavelengths. In this study, numerical electromagnetic simulation revealed that the z-polarization component (perpendicular to the membrane plane) of the electric field was dominant near the nanopore and generated a large electric field gradient at the nanopore exit, typically with a decay length of 2 nm for a nanopore with diameter of 7 nm. The large extinction coefficient contributed to reduction in background noise coming from fluorophore-labeled DNA strands that remain behind the membrane (the cis side of the membrane). We observed a high signal-to-noise ratio of single DNA translocation events under the application of an electric field.  相似文献   

13.
DNA在熵受限管道中穿越过程的计算机模拟   总被引:2,自引:0,他引:2       下载免费PDF全文
利用Metropolis Monte-Carlo动力学方法结合键长涨落算法,模拟了单链DNA分子在电场作用下穿越熵受限管道的动力学过程.结果表明,DNA分子穿越管道时将经历无规迁移、受限迁移及快速迁移等几个显著不同的阶段.平均迁移率随外场增加而增大并最终达到饱和值μ0,受限时间的对数与所加场强的倒数之间基本满足线性关系.模拟结果不仅与文献所给的实验结果基本一致,而且还可以提供实验不能直接观察到的DNA分子较为详细的穿越过程.  相似文献   

14.
We report voltage-clamp measurements through single conical nanopore obtained by chemical etching of a single ion track in polyimide film. Special attention is paid to the pink noise of the ionic current (i.e., 1/f noise) measured with different filling liquids. The relative pink-noise amplitude is almost independent of concentration and pH for KCl solutions, but varies strongly using ionic liquids. In particular, we show that depending on the ionic liquid, the transport of charge carriers is strongly facilitated (low noise and higher conductivity than in the bulk) or jammed. These results show that the origin of the pink noise can be ascribed neither to fluctuations of the pore geometry nor to the pore wall charges, but rather to a cooperative effect on ions motion in confined geometry.  相似文献   

15.
A perm-selective nanochannel could initiate concentration polarization near the nanochannel, significantly decreasing (increasing) the ion concentration in the anodic (cathodic) end of the nanochannel. Such strong concentration polarization can be induced even at moderate buffer concentrations because of local ion depletion (therefore thicker local Debye layer) near the nanochannel. In addition, fast fluid vortices were generated at the anodic side of the nanochannel due to the nonequilibrium electro-osmotic flow (EOF), which was at least approximately 10x faster than predicted from any equilibrium EOF. This result corroborates the relation among induced EOF, concentration polarization, and limiting-current behavior.  相似文献   

16.
17.
The “bare” Coulomb repulsion between two delocalized electrons in a one-dimensional poly (TCNQ?) chain of the organic charge transfer crystal NMP-TCNQ is shown to be substantially reduced by attractive terms arising (1) from the polarization of the localized electronic system of the TCNQ chain itself and (2) from the polarization of the delocalized electrons in neighbouring NMP chains. The resulting effective repulsion is 0.33 eV at the Fermi level.  相似文献   

18.
Baida Lü  L.e.i. Wang 《Optik》2002,113(11):495-498
The polarization properties of Gaussian Schell-model (GSM) beams and partially polarized Gaussian Schell-model (PGSM) beams passing through a polarization grating (PG) are studied based on the beam coherence-polarization (BCP) matrix formulism, where the finite size of the PG is considered. Detailed numerical calculation results are given and compared with the previous work.  相似文献   

19.
酸性环境引发的岩石孔隙表面溶解增加了孔隙内水溶液的盐离子浓度,破坏了孔隙的表面结构.本文采用分子动力学模拟的方法研究了纳米级岩石孔隙内水溶液的流动特性,分析了盐离子浓度和孔隙表面结构对水流速度分布的影响及原因.研究结果表明:纳米级岩石孔隙内的水溶液流动符合泊肃叶流动特性,流速呈"抛物线"分布;随盐离子浓度增加,水溶液内部氢键网络变得更为致密,水黏度随其呈线性增长;水溶液中离子浓度越大,孔隙表面对水流动的阻力越大,最大流速越小,速度分布的"抛物线"曲率半径越大;岩石孔隙表面结构的破坏改变了流动表面的粗糙程度,增加了孔隙表面对H2O分子的吸引力.随表面结构破坏程度的增大,水溶液在近壁区域的密度增大,流速降低;当表面破坏程度达到50%时,水溶液在近壁区域出现了明显的负边界滑移现象.  相似文献   

20.
Tsu-Hsu Yen 《Molecular physics》2013,111(23):3783-3795
Solid–fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall–fluid interaction energy (?wf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid–fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号