首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present quantum magneto-conductance simulations, at the quantum low energy condition, to study the open quantum dot limit. The longitudinal conductance G(E,B) of spinless and non-interacting electrons is mapped as a function of the magnetic field B and the energy E of the electrons. The quantum dot linked to the semi-infinite leads is tuned by quantum point contacts of variable width w. We analyze the transition from a quantum wire to an open quantum dot and then to an effective closed system. The transition, as a function of w, occurs in the following sequence: evolution of quasi-Landau levels to Fano resonances and quasi-bound states between the quasi-Landau levels, followed by the formation of crossings that evolve to anti-crossings inside the quasi-Landau level region. After that, Fano resonances are created between the quasi-Landau states with the final generation of resonant tunneling peaks. By comparing the G(E,B) maps, we identify the closed and open-like limits of the system as a function of the applied magnetic field. These results were used to build quantum openness diagrams G(w,B). Also, these maps allow us to determine the w-limit value from which we can qualitatively relate the closed system properties to the open one. The above analysis can be used to identify single spinless particle effects in experimental measurements of the open quantum dot limit.  相似文献   

2.
孙科伟  熊诗杰 《中国物理》2006,15(4):828-832
We have calculated the transport properties of electron through an artificial quantum dot by using the numerical renormalization group technique in this paper. We obtain the conductance for the system of a quantum dot which is embedded in a one-dimensional chain in zero and finite temperature cases. The external magnetic field gives rise to a negative magnetoconductance in the zero temperature case. It increases as the external magnetic field increases. We obtain the relation between the coupling coefficient and conductance. If the interaction is big enough to prevent conduction electrons from tunnelling through the dot, the dispersion effect is dominant in this case. In the Kondo temperature regime, we obtain the conductivity of a quantum dot system with Kondo correlation.  相似文献   

3.
We present an atomic-scale analysis of the indium distribution of self-assembled (In,Ga)As quantum rings (QRs), which are formed from InAs quantum dots by capping with a thin layer of GaAs and subsequent annealing. We find that the size and shape of QRs as observed by cross-sectional scanning tunneling microscopy (X-STM) deviate substantially from the ring-shaped islands as observed by atomic force microscopy on the surface of uncapped QR structures. We show unambiguously that X-STM images the remaining quantum dot material whereas the AFM images the erupted quantum dot material. The remaining dot material shows an asymmetric indium-rich crater-like shape with a depression rather than an opening at the center and is responsible for the observed electronic properties of QR structures. These quantum craters have an indium concentration of about 55% and a diameter of about 20 nm, which is consistent with the observed electronic radius of QR structures. Based on the structural information from the X-STM measurements, we calculate the magnetization as a function of the applied magnetic field. We conclude that, although the real QR shape differs strongly from an idealized circular-symmetric open ring structure, Aharonov–Bohm-type oscillations in the magnetization can be expected.  相似文献   

4.
李睿 《物理学报》2015,64(16):167303-167303
半导体量子点中的电子自旋具有较长相干时间以及可扩展性的特点, 在近十几年来引起了人们的广泛兴趣. 人们常常利用电子自旋共振技术来对单个自旋进行操纵. 这样不但需要一个静磁场来使电子产生赛曼劈裂, 同时还需要一个与之垂直的局域振荡磁场. 但是, 在实验上产生足够强且具有固定频率的局域磁场是比较困难的. 后来人们发现, 局域的振荡电场也可以操纵单个电子自旋, 也就是所谓的电偶极自旋共振. 众所周知, 自旋只有自旋磁矩, 不会与电场有任何直接的相互作用. 所以, 电偶极自旋共振的发生必须依赖于某些媒质. 这些媒质包括:量子点材料中的自旋轨道耦合作用, 量子点中的局域磁场梯度, 以及量子点中电子自旋与核自旋的超精细相互作用. 这些媒质能诱导出自旋与电场之间间接的相互作用, 从而外电场操纵单个电子自旋得以实现. 本文总结归纳了目前半导体量子点系统中发生电偶极自旋共振的三种主要物理机理.  相似文献   

5.
We demonstrate single-shot detection of single electrons generated by single photons using an electrically tunable quantum dot and a quantum point contact charge detector. By tuning the quantum dot in a Coulomb blockade before the photoexcitation, we observe the trapping and subsequent resetting of single photogenerated electrons. The photogenerated electrons can be stored in the dot for a tunable time range from shorter to longer than the spin-flip time T1. We combine this trap-reset technique with spin-dependent tunneling under magnetic fields to observe the spin-dependent photon detection within the T1.  相似文献   

6.
Magnetotransport through quantum dot structures is investigated numerically via a scattering matrix technique. The results for two typical structures show that the magnetoconductance is strongly dependent on the quantum dot geometry. For the symmetric quantum dot structure, it is found that the magnetoconductance profiles exhibit irregular structures and the magnetic field plays a similar role to that of disorder in the electron transport. For the T-shaped quantum dot structure, the oscillations in the conductance are found to be completely suppressed and the quantized conductance plateaus are recovered in a strong magnetic field, which is attributed to the asymmetry of the structure geometry with respect to the right- and left-moving edge states.  相似文献   

7.
The thermodynamic properties of an In Sb quantum dot have been investigated in the presence of Rashba spin–orbit interaction and a static magnetic field. The energy spectrum and wave-functions for the system are obtained by solving the Schrodinger wave-equation analytically. These energy levels are employed to calculate the specific heat, entropy,magnetization and susceptibility of the quantum dot system using canonical formalism. It is observed that the system is susceptible to maximum heat absorption at a particular value of magnetic field which depends on the Rashba coupling parameter as well as the temperature. The variation of specific heat shows a Schottky-like anomaly in the low temperature limit and rapidly converges to the value of 2kB with the further increase in temperature. The entropy of the quantum dot is found to be inversely proportional to the magnetic field but has a direct variation with temperature. The substantial effect of Rashba spin–orbit interaction on the magnetic properties of quantum dot is observed at low values of magnetic field and temperature.  相似文献   

8.
We calculate the counting statistics of electron transfer through an open quantum dot with charging interaction. A dot that is connected to leads by two single-channel quantum point contacts in an in-plane magnetic field is described by a Luttinger liquid with impurity at the Toulouse point. We find that the fluctuations of the current through this conductor exhibit distinctive interaction effects. Fluctuations saturate at high voltages, while the mean current increases linearly with the bias voltage. All cumulants higher than the second one reach at large bias a temperature independent limit.  相似文献   

9.
We consider a quantum dot in the regime of the quantum Hall effect, particularly in Laughlin states and non-Abelian Read-Rezayi states. We find the location of the Coulomb blockade peaks in the conductance as a function of the area of the dot and the magnetic field. When the magnetic field is fixed and the area of the dot is varied, the peaks are equally spaced for the Laughlin states. In contrast, non-Abelian statistics is reflected in modulations of the spacing which depend on the magnetic field.  相似文献   

10.
磁场对非对称量子点中极化子性质的影响   总被引:4,自引:1,他引:3  
肖玮  肖景林 《发光学报》2007,28(5):657-661
采用线性组合算符和幺正变换方法研究磁场对非对称量子点中弱耦合磁极化子性质的影响.导出了非对称量子点中弱耦合磁极化子的振动频率、基态能量和基态结合能随量子点的横向和纵向有效受限长度、磁场和电子-声子耦合强度的变化关系.数值计算结果表明:非对称量子点中弱耦合磁极化子的基态能量和基态结合能随量子点的横向和纵向有效受限长度的增加而迅速增大.随回旋频率的增加而增大,随电子-声子耦合强度的增加而减小.  相似文献   

11.
We have performed a non-equilibrium quantum transport calculations for a two-terminal mesoscopic system including a magnetic quantum dot. Using the non-equilibrium Green’s function technique, we have obtained electric current and charge distribution in the temperature range from 1 to 10 K as a function of magnetic field. Results indicate that the density of carriers essentially can be controlled by temperature and bias voltage.  相似文献   

12.
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully transmitting mode, a system thought to be well described without invoking Coulomb interactions. Below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage, corresponding to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are mesoscopic Coulomb blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.  相似文献   

13.
我们利用单杂质Anderson模型及运动方程等理论,通过求解格林函数的方法研究了通过T型量子点结构(耦合于铁磁电极和介观环量子点结构)的自旋极化输运过程.研究结果表明,与量子点相耦合的铁磁电极中的极化强度是控制量子点电子输运的重要参数,由此可以达到自旋阀效应.另外我们还发现与量子点相耦合的介观环中的磁通会影响电子自旋向上和自旋向下近藤共振峰的分裂程度,但若加入适当的外磁场,那么这样的分裂将被抵消。  相似文献   

14.
We have measured the low-temperature transport properties of an open quantum dot formed in a clean one-dimensional channel. At zero magnetic field, continuous and periodic oscillations superimposed upon ballistic conductance steps are observed when the conductance through the dot G exceeds 2e2/h. We ascribe the observed conductance oscillations to evidence for charging effects in an open dot. This is supported by the evolution of the oscillating features for G>2e2/h as a function of both temperature and barrier transparency.  相似文献   

15.
We study the ballistic edge-channel transport in quantum wires with a magnetic quantum dot, which is formed by two different magnetic fields B(*) and B0 inside and outside the dot, respectively. We find that the electron states located near the dot and the scattering of edge channels by the dot strongly depend on whether B(*) is parallel or antiparallel to B0. For parallel fields, two-terminal conductance as a function of channel energy is quantized except for resonances, while, for antiparallel fields, it is not quantized and all channels can be completely reflected in some energy ranges. All these features are attributed to the characteristic magnetic confinements caused by nonuniform fields.  相似文献   

16.
Spin-dependent electronic transport through an open multiple-quantum-dot ring threaded by a magnetic flux is theoretically investigated by using the single particle Green?s function method. By introducing local Rashba spin–orbit interaction on an individual quantum dot and local magnetic moments on two of other quantum dots, we calculate the spin-polarization in the output lead. We find the spin-polarization can be tuned by manipulating magnetic moments, adjusting magnetic flux and setting the Rashba spin–orbit strength. It is also shown the system can operate as an efficient spin-inverter when the structure is adjusted properly. The analysis can be utilized in designing optimized nanodevices.  相似文献   

17.
We have fabricated a few-electron quantum dot that can be tuned down to zero electrons while maintaining strong coupling to the leads. Using a nearby quantum point contact as a charge sensor, we can determine the absolute number of electrons in the quantum dot. We find several sharp peaks in the differential conductance, occurring at both zero and finite source-drain bias, for the one- and two-electron quantum dot. We attribute the peaks at finite bias to a Kondo effect through excited states of the quantum dot and investigate the magnetic field dependence of these Kondo resonances.  相似文献   

18.
Qiao Chen 《Physics letters. A》2008,372(15):2714-2719
We have investigated the spectral density of shot noise of the system with a quantum dot (QD) coupled to two single-wall carbon nanotube terminals, where a rotating magnetic field is applied to the QD. The carbon nanotube (CN) terminals act as quantum wires which open quantum channels for electrons to transport through. The shot noise and differential shot noise exhibit novel behaviors originated from the quantum nature of CNs. The shot noise is sensitively dependent on the rotating magnetic field, and the differential shot noise exhibits asymmetric behavior versus source-drain bias and gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula. The super-Poissonian and sub-Poissonian shot noise can be achieved in different regime of source-drain bias.  相似文献   

19.
We analyze the effects of spin-orbit coupling on fluctuations of the conductance of a quantum dot fabricated in a GaAs heterostructure. Counterintuitively we argue that spin-orbit effects may become important in the presence of a large parallel magnetic field B( parallel), even if they are negligible for B( parallel) = 0. This should be manifest in the level repulsion of a closed dot, and in reduced conductance fluctuations in dots with a small number of open channels in each lead, for large B( parallel). Our picture is consistent with the experimental observations of Folk et al.  相似文献   

20.
We study a two-electron quantum dot molecule in a magnetic field by the direct diagonalization of the Hamiltonian matrix. The ground states of the molecule with the total spin S = 0 and S = 1 provide a possible realization for a qubit of a quantum computer. Switching between the states is best achieved by changing the magnetic field. Based on an analysis of the wave function, we show that the system consists of composite particles formed by an electron and flux quanta attached to it. This picture can also be used to explain the spin phase diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号