首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The shear viscosity of a two-dimensional liquid-state dusty plasma was measured experimentally. A monolayer of highly charged polymer microspheres, with a Yukawa interaction, was suspended in a plasma sheath. Two counterpropagating Ar+ laser beams pushed the particles, causing shear-induced melting of the monolayer and a shear flow in a planar Couette configuration. By fitting the particle velocity profiles in the shear flow to a Navier-Stokes model, the kinematic viscosity was calculated; it was of order 1 mm(2) s(-1), depending on the monolayer's parameters and shear stress applied.  相似文献   

2.
We present the results of our experimental study of the flow of a dusty plasma liquid produced by macroparticles in an argon plasma. The dependences of shear viscosity for such a liquid on the magnitude of the external force inducing the dusty plasma liquid flow and on the plasma-generating gas pressure are analyzed. We have established that the viscosity of a dusty plasma medium decreases with increasing shear stress in it, while the viscosity of such a liquid increases with buffer gas pressure. The flow of a dusty plasma liquid under the action of an external force has been found to resemble the plastic deformation of a Bingham body. We suggest that the formation of crystal-like dusty plasma clusters in a “liquid” phase can be responsible for the non-Newtonian behavior of the dusty plasma liquid flow.  相似文献   

3.
We study stable equilibria of liquid crystals in the flow being at rest and the stable dynamic states for nematic liquid crystals under weak shear flow for the Doi model [M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, 1986]. It is first theoretically proven that there is a hysteresis phenomenon in the flow being at rest when the non-dimensional potential intensity among particles changes. Furthermore, in the weak shear flow, we show that there exist many stable dynamic states: flow aligning, tumbing, log-rolling and kayaking, which depend on the initial concentrated orientation of liquid crystal particles. The results are consistent with those of numerical simulation [M.G. Forest, Q. Wang, R. Zhou, The weak shear kinetic phase diagram for nematic polymers, Rheol. Acta 43 (2004) 17-37; M.G. Forest, R. Zhou, Q.Wang, Full-tensor alignment criteria for sheared nematic polymers, J. Rheol. 47 (2003) 105-127] and experimental discoveries [W.R. Burghardt, Molecular orientation and rheology in sheared lyotropic liquid crystalline polymers, Macromol. Chem. Phys. 199 (1998) 471-488; Ch. Gähwiller, Temperature dependence of flow alignment in nematic liquid crystals, Phys. Rev. Lett. 28 (1972) 1554-1556]. Theoretical analysis is reported the first time that the Kayaking state does not circulate around a fixed direction but the asymmetric axis will periodically change.  相似文献   

4.
Observations show that plasma crystals, suspended in the sheath of a radio-frequency discharge, rotate under the influence of a vertical magnetic field. Depending on the discharge conditions, two different cases are observed: a rigid-body rotation (all the particles move with a constant angular velocity) and sheared rotation (the angular velocity of particles has a radial distribution). When the discharge voltage is increased sufficiently, the particles may even reverse their direction of motion. A simple analytical model is used to explain qualitatively the mechanism of the observed particle motion and its dependence on the confining potential and discharge conditions. The model takes into account electrostatic, ion drag, neutral drag, and effective interparticle interaction forces. For the special case of rigid-body rotation, the confining potential is reconstructed. Using data for the radial dependence of particle rotation velocity, the shear stresses are estimated. The critical shear stress at which shear-induced melting occurs is used to roughly estimate the shear elastic modulus of the plasma crystal. The latter is also used to estimate the viscosity contribution due to elasticity in the plasma liquid. Further development is suggested in order to quantitatively implement these ideas.  相似文献   

5.
F. Naghdi  J.Y. Kang  H.S. Kim 《哲学杂志》2015,95(31):3452-3466
The shear deformation behaviour of an extruded Mg–4Zn–0.5Ca alloy was studied using shear punch testing at room temperature. The extrusion process effectively refined the microstructure, leading to a grain size of 4.6 ± 1.4 μm. Contributions of different strengthening mechanisms to the room temperature shear yield stress, and overall flow stress of the material, were calculated. These mechanisms include dislocation strengthening, grain boundary strengthening, solid solution hardening and strengthening resulting from second-phase particles. Grain boundary strengthening and solid solution hardening made significant contributions to the overall strength of the material, while the contributions of second-phase particles and dislocations were trivial. The observed differences between calculated and experimental strength values were discussed based on the textural softening of the material.  相似文献   

6.
采用射频(RF)等离子体对颗粒形状不规则的钨粉球化,研究了加料速率和钨粉分散方式对球化率的影响。通过用电子扫描显微镜(SEM)观测得到的被球化粉末的百分比评估了球化效率。通过对球化处理的钨粉的X射线衍射谱(XRD)的检测,验证了在球化过程中无氧化发生和其它杂质介入。当钨粉以极短暂时间(约几毫秒)快速穿越等离子体炬时,钨粉颗粒因受热而熔化成液滴,快速冷却后,形成致密的球形固态颗粒。  相似文献   

7.
采用射频(RF)等离子体对颗粒形状不规则的钨粉球化,研究了加料速率和钨粉分散方式对球化率的影响。通过用电子扫描显微镜(SEM)观测得到的被球化粉末的百分比评估了球化效率。通过对球化处理的钨粉的X射线衍射谱(XRD)的检测,验证了在球化过程中无氧化发生和其它杂质介入。当钨粉以极短暂时间(约几毫秒)快速穿越等离子体炬时,钨粉颗粒因受热而熔化成液滴,快速冷却后,形成致密的球形固态颗粒。  相似文献   

8.
Evolution of the anisotropic texture during and after cessation of shear flow for a side-chain-type liquid crystalline polysiloxane (LCS) was studied by shearing microscopy at temperatures above the isotropic to liquid crystalline phase transition temperature ( Tc=309.2 K if LCS is cooled from the isotropic phase in the quiescent state). The anisotropic texture of LCS during the shear flow was found at a temperature of 313 K and a shear rate of 50 s?1. After cessation of the shear flow, the anisotropic texture disappeared. At a temperature of 311 K and a shear rate of 50 s?1, LCS under shear flow also showed the anisotropic texture. It is noteworthy that the anisotropic texture was stable at this temperature, even after cessation of the shear flow. Furthermore, the evolution of the anisotropic texture was described quantitatively from the behavior of the birefringence as a function of time after cessation of the shear flow.  相似文献   

9.
The effect of simple shear flow on the miscibility and morphology of blends of poly(methyl methacrylate) (PMMA) and a styrene-acrylonitrile random copoly-mer with 29.5 wt% acrylonitrile (SAN-29.5) has been investigated using shear apparatus and transmission electron microscopy (TEM). The obtained data showed that only shear-induced mixing was observed for all of the composition ratios. The increase of the cloud point (or homogenization temperature) ΔT(γdot; = T(γdot;) - T(0) was investigated as a function of shear rate γdot;; in addition, the normalized shift in the cloud point ΔT(γdot;)/T(0) versus γdot; was also studied and compared with that of simple liquid mixtures and polymer solutions. The results showed that the polymer blends were more sensitive to the shear rate than both simple-liquid mixtures and polymer solutions. The morphology of the PMMN SAN(= 75/25) blend (the critical composition) indicated that shear-induced phase mixing occurred at a critical shear rate value, below which the two phases were highly oriented and elongated in the flow direction. Three regimes, depending on the applied shear rate values, were detected that were in good agreement with the literature data for polymer solutions. The effect of relaxation times after shear cessation showed a decrease in the orientation of the elongated particles, but it did not completely vanish even for 10 min after the shear cessation.  相似文献   

10.
李承跃  J.P.Allain  邓柏权 《中国物理》2007,16(11):3312-3318
This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario II of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.[第一段]  相似文献   

11.
We contrast the extensional and shear dynamics of non-Brownian suspensions as a function of particle concentration. We show that the thinning rate selected during the viscoelastic pinch-off of a liquid bridge is related to the shear rate at which normal stresses become positive, which differs from the shear rate at the onset of shear thickening. By tracking particles, we demonstrate that the extensional flow is heterogeneous, with local variations of the volume fraction consistent with self-dilution. This nonuniform structure is the cause of the buckling of the threads formed after breakup.  相似文献   

12.
The objective of this paper is ultrasonic measurement and characterization of solid particles in liquid (20–40 μm glass beads in water) in high shear flow (1.5–2 m/s). Ultrasonic time dependent signals as well as frequency spectra are analyzed, for simultaneous determination of average particle concentration and average flow speed. As a result, the distribution of sound energy in such concentrated systems at given flow speeds is measured. Influence of flow turbulence is demonstrated in measurements. Also, characteristic behaviors of liquid–particle mixtures like particle clustering and influence of gas bubbles have been investigated. Experimental results are complemented with a discussion of factors that influence measurement uncertainty.  相似文献   

13.
NMR velocimetry has been used to observe the steady-shear rheological behaviour of a concentrated suspension of hard-sphere like 370 nm diameter PMMA core-shell latex particles at the volume fraction Φ = 0.46, the liquid core of the spheres rendering possible NMR observation of the particles themselves. Rheological measurements in a cone-and-plate geometry indicate that when aged (i.e. left at rest for two weeks), the material exhibits yield stress behaviour at very low shear rates. For shear rates greater than 1 s - 1 a transition to liquid-like behaviour was observed, leading to a rejuvenated fluid state which exhibits shear-thinning behaviour over a wide range of shear rates. A similar yield stress behaviour was reflected in NMR velocimetry measurements in a Couette geometry, where the solid-to liquid transition could be clearly observed. Under steady-state flow, the fluid state inside the radius at which yield stress was observed, exhibited shear-thinning behaviour with a power law exponent n slowly approaching unity with increasing shear rate. This behaviour has some similarities with a model of Derec et al. in which aging and rejuvenation effects compete. Substantial wall slip was observed both at the inner and at the outer wall, an effect which disappeared as the shear rate was increased. No radial particle migration from the high-shear region at the inner wall was observed.  相似文献   

14.
《Composite Interfaces》2013,20(2):85-94
The purpose of this work was to evaluate the influence of phosphorus quantity of the matrix of a nickel alloy on microstructure and hardness of nickel composite with hexagonal boron nitride – h-BN. The work was carried out using two nickel alloys with varying quantities of phosphorus (0.3 and 0.75 wt.%). The quantity of particles of solid lubricant added to the alloy was 10 vol.% of h-BN. The samples were compacted at 600 MPa and sintered at 1150?°C for 60 min in plasma. The results showed that the composite with 0.3 wt.% of phosphorus had hardness of 236 HV 0.025 (±34,25) and the composite with 0.75 wt.% of phosphorus had hardness of 326 HV 0.025 (±38,90), and formation of pellets of h-BN with a size between 50 and 100 μm and low porosity due to the formation of liquid phase of phosphide during sintering which carries the lubricant fine particles of approximately 10 μm dispersed in the microstructure during pore coalescence. As a result, the quantity of phosphorus present may influence the microstructural properties (pore number and size and distribution of particles of solid lubricant) and hardness which are so important for the development of self-lubricating composites, particularly, the nickel alloy/h-BN composites.  相似文献   

15.
E.A. Ryzhov 《Physics letters. A》2011,375(44):3884-3889
The dynamics of fluid particles in the vicinity of a self-propagating vortex pair, embedded in a nonstationary shear flow, is studied. When the shear flow is steady, the vicinity of the pair, which is called as a vortex atmosphere, consists of closed stream-lines, which coincide with fluid particles? trajectories. When the shear flow is nonstationary, the trajectories? behaviour changes drastically, then chaotic advection occurs. It is shown in the Letter that the vortex pair propagation velocity varies with the parameters (amplitude, and frequency) of the nonstationary shear flow. It is demonstrated, that changing of the mean velocity leads to changing of the size of the atmosphere.  相似文献   

16.
李莉  刘悦 《中国物理 B》2013,(7):352-358
A code named LARWM with non-ideal magnetohydrodynamic equations in cylindrical model is used to describe the instability in Tokamak plasma surrounded by a conducting wall with finite resistivity. We mainly take three factors related to the shear equilibrium plasma flow into consideration to study the stabilizing effect of the shear flow on the resistive wall modes (RWMs). The three factors are the velocity amplitude of flow, the shear rate of flow on plasma surface, and the inertial energy of equilibrium plasma flow. In addition, a local shear plasma flow is also calculated by the LARWM code. Consequently, it is found that the inertial energy of the shear equilibrium plasma flow has an important role in the stabilization of the RWMs.  相似文献   

17.
The importance of thermophoresis and its essential role in particle migration have led to many published reports (i.e. aim and objectives). However, there exists no report on thermo-migration of tiny/nano-sized particles in the motion of various fluids. A meta-analysis on the significance of either nano or tiny particles exposed to thermophoretic force owing to temperature gradient during the dynamics of liquid substances is deliberated upon in this report. The method of slope linear regression through the data point was adopted to scrutinize sixty (60) published reports in which the effects of thermophoresis (thermodiffusion) is deliberated upon. The outcome of the study shows that different responses to the force of a temperature gradient are sufficient enough to enhance the temperature distribution and the concentration of non-Newtonian fluid due to an increase in thermophoresis. Thermophoretic effect increases the concentration of fluids in which the relationship between the shear stress and shear strain is non-linear. Skin friction coefficients is a decreasing function of thermophoresis. Increase in thermophoretic deposition is achievable due to an increase in thermophoresis. The effect of haphazard motion of nanoparticles should be investigated when it increases negligibly and considerably large. Thermal radiation strongly influences the significance of thermo-migration of tiny particles on fluid flow.  相似文献   

18.
The high-melting-point joints by transient-liquid-phase are increasingly playing a crucial role in the die bonding for the high temperature electronic components. In this study, three kinds of Sn/Ni composite solder pastes composed of different sizes of Ni particles were synthesized to accelerate metallurgical reaction among Sn/Ni interfaces under the ultrasonic-assisted transient liquid phase (U-TLP) soldering. The temperature evolution, microstructure and mechanical property in joints composed by these composite solder pastes with or without ultrasonic energy were systemically investigated. The intermetallic joint consisted of high-melting-point sole Ni3Sn4 intermetallic compound with a little residual Ni was obtained under the conditions of no pressure and lower power (200 W) in a high-temperature duration of only 10 s, its shear strength was up to 45.3 MPa. Ultrasonic effects significantly accelerated the reaction among the interfaces of liquid Sn and solid Ni, which attributed to the temperature rise caused by acoustic cavitation because of large number of liquid/solid interfaces during U-TLP, resulting in accelerated solid/liquid interfacial diffusion and growth of intermetallic compounds. This intermetallic joint formed by U-TLP soldering has a promising potential for applications in high-power device packaging.  相似文献   

19.
X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' ( q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.  相似文献   

20.
Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号