首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of CO2 on the sensitivity of polymeric track detectors was studied. It has been found that the sensitivity of SR-90 is dependent on the amount of CO2 dissolved in the polymer at the time of etching. It has been also found that CR-39 can be sensitized to some extent with an aging in CO2. Since the sensitization in CO2 is possible even a long time after the irradiation, the mechanism of the latent track formation by CO2 is quite different from that by O2. This would be the key to achieve the long term stability of polymeric track detectors such as SR-90 and CR-39.  相似文献   

2.
Nanocomposites consisting of a polymethylmethacrylate or polystyrene matrix with embedded silicon dioxide nanoparticles surface-modified by silazanes have been prepared by melting technology. The influence of particles on viscoelastic properties of the nanocomposites has been studied using dynamic mechanical analysis. It has been revealed that the addition of 20 wt % of SiO2 raises the flexural modulus of the nanocomposites by 30%.  相似文献   

3.
An optoacoustical method is used in experimental study of nonlinearity in absorption of pulsed CO2 laser radiation by air with CO2 and H2O added and pure CO2. The laser pulse consists of frequencies related to several rotational transitions, generated simultaneously. Nonlinearity in absorption was detected for laser radiation levels above 0.2 MW/cm2.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 49–51, October, 1982.  相似文献   

4.
Summary We have used 60 rovibrational lines of a Lumonics TEA CO2 laser to record the spectra of coincidence of SO2 IR absorption with CO2 laser emission. We extended the same type of investigation to CO2 molecules and observed an absorption at practically all the rovibrational lines of the laser. We have also recorded the increase of absorption with pressure of the studied molecule and with its temperature. Our work reveals very accurately the fine structure of these absorptions that shows a clear discreteness in the intensities of the lines. Some implication of this discreteness in multiphoton absorption is also presented, through data that indicate very strong vibrational coupling between ground and excited electronic states of SO2. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

5.
Ignition Delay Time (IDT) plays a significant role in combustion process of advanced power cycles such as direct-fired supercritical carbon dioxide (sCO2) cycle. In this cycle, fuel and oxidizer are heavily diluted with carbon dioxide (CO2) and autoignite at a combustor inlet pressure range of 10–30 MPa and a temperature range of 900–1500 K. A fuel candidate for sCO2 power cycle applications is syngas (H2/CO mixture); however, its ignition properties at these conditions are not studied. Moreover, the existing chemical kinetics models have not been evaluated for H2/CO mixtures applications relevant to elevated pressure conditions and under large dilution levels of CO2. Therefore, two tasks are performed in this study. First, IDTs of a H2/CO=95:5 mixture at stoichiometric and rich (Φ=2) conditions are measured in a high-pressure shock tube under 95.5% CO2 dilution level and at 10 MPa and 20 MPa for a temperature range of 1161–1365 K. For the experimental conditions considered in this work, Aramco 2.0, FFCM-1, HP-Mech and USC Mech II kinetic models are capable of capturing IDT data. Second, similar experiments are conducted by replacing the CO2 dilute gas with Argon (Ar) to understand the chemical effect of CO2 on IDT globally. Sensitivity analysis results reveal that for both diluents, reaction H + O2(+M)=HO2(+M) is the most important reaction in controlling ignition. Further, a rate of production analysis shows that CO2 has a competing effect on OH radical production. On one hand, CO2 accelerates the consumption of H radicals through H + O2+CO2→HO2+CO2 therefore hindering HO2+HOH+OH reaction for OH production. On the other hand, CO2 is shown to enhance OH production through H2O2+M=OH+OH+M. These kinetic effects from CO2 cancel out, therefore CO2 does not significantly alter the IDT globally when compared to the Ar bath case. This is confirmed by both experimental results and simulation.  相似文献   

6.
Regular measurements of atmospheric CO 2 mixing ratios and their carbon isotope composition (13C/12C and 14C/12C ratios) performed between 2005 and 2009 at two sites of contrasting characteristics (Krakow and the remote mountain site Kasprowy Wierch) located in southern Poland were used to derive fossil fuel-related and biogenic contributions to the total CO 2 load measured at both sites. Carbon dioxide present in the atmosphere, not coming from fossil fuel and biogenic sources, was considered ‘background’ CO 2. In Krakow, the average contribution of fossil fuel CO 2 was approximately 3.4%. The biogenic component was of the same magnitude. Both components revealed a distinct seasonality, with the fossil fuel component reaching maximum values during winter months and the biogenic component shifted in phase by approximately 6 months. The partitioning of the local CO 2 budget for the Kasprowy Wierch site revealed large differences in the derived components: the fossil fuel component was approximately five times lower than that derived for Krakow, whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighbourhood of the station. While the presented study has demonstrated the strength of combined measurements of CO 2 mixing ratios and their carbon isotope signature as efficient tools for elucidating the partitioning of local atmospheric CO 2 loads, it also showed the important role of the land cover and the presence of the soil in the footprint of the measurement location, which control the net biogenic surface CO 2 fluxes.  相似文献   

7.
Regular measurements of atmospheric CO (2) mixing ratios and their carbon isotope composition ((13)C/(12)C and (14)C/(12)C ratios) performed between 2005 and 2009 at two sites of contrasting characteristics (Krakow and the remote mountain site Kasprowy Wierch) located in southern Poland were used to derive fossil fuel-related and biogenic contributions to the total CO (2) load measured at both sites. Carbon dioxide present in the atmosphere, not coming from fossil fuel and biogenic sources, was considered 'background' CO (2). In Krakow, the average contribution of fossil fuel CO (2) was approximately 3.4%. The biogenic component was of the same magnitude. Both components revealed a distinct seasonality, with the fossil fuel component reaching maximum values during winter months and the biogenic component shifted in phase by approximately 6 months. The partitioning of the local CO (2) budget for the Kasprowy Wierch site revealed large differences in the derived components: the fossil fuel component was approximately five times lower than that derived for Krakow, whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighbourhood of the station. While the presented study has demonstrated the strength of combined measurements of CO (2) mixing ratios and their carbon isotope signature as efficient tools for elucidating the partitioning of local atmospheric CO (2) loads, it also showed the important role of the land cover and the presence of the soil in the footprint of the measurement location, which control the net biogenic surface CO (2) fluxes.  相似文献   

8.
Inhee Lee  Sheikh A. Akbar 《Ionics》2014,20(4):563-569
Potentiometric CO2 gas sensors with thin-film lithium phosphate (Li3PO4) electrolytes were developed by using radio frequency (RF) magnetron sputtering. Li2CO3 and a mixture of Li2TiO3 and TiO2 were used as sensing and reference electrodes, respectively. By using the RF sputtering deposition process, we obtained a dense, crystalline, thin-film Li3PO4 electrolyte with good adhesion on the Al2O3 substrate. The thin-film Li3PO4 electrolyte had good ionic conductivity, i.e., 2.15?×?10?6 S cm?1 at 500 °C, and its activation energy was 0.97 eV. The thin-film Li3PO4 electrolyte was suitable for the miniaturization of potentiometric CO2 sensors. The thin-film potentiometric CO2 sensor provided relatively good sensing response for overall CO2 concentrations (500 to 3,000 ppm and 5 to 20 %) at 500 °C. The Nernstian slope of 78.2 mV/decade obtained for CO2 concentrations from 5 to 20 % at 500 °C was close to the theoretical value (76.6 mV/decade). Although the sensor’s reading deviated from the theoretical value at low CO2 concentrations (500 to 3,000 ppm), the sensor provided better sensing performance than a potentiometric CO2 sensor with a thick electrolyte. As a result, it was assumed that the thin-film sensor could be used to monitor the overall concentration of CO2 in the environment.  相似文献   

9.
In this work, a complex investigation of the film surface composition and nanoscale mechanical properties, i.e. hardness and elastic modulus, of plasma-modified and silica-coated hydrogel thin films was carried out. Plasma treatment was performed in a reactive ion etching chamber (SF6, CHF3) at radio frequency (rf, 13.56 MHz) and in a plasma-enhanced chemical vapor deposition chamber (SiH4/N2, NH3, N2O) at radio frequency and dual frequency (13.56 MHz/100 kHz), respectively. The use of the dual-frequency configuration comprising two power supplies and operated in a switched mode enabled the investigation of the ion-bombardment influence on the polymer properties. For the application in silicon micromachined sensors best results were obtained by using a NH3 or SiH4/N2 low-pressure plasma modification and a silica coating of the sensitive hydrogel film. PACS 81.05.Lg; 81.15.Gh; 81.65.Cf; 81.70.Bt  相似文献   

10.
Three types of polymers, phenol-formaldehyde copolymer and polypropyleneimine and polyamidoamine dendrimers, are synthesized using the polycondensation method. Mesoporous polymeric networks are formed by treating the above dendrimers with crosslinking agents. Impregnation of polymeric networks with rhodium acetylacetonate in supercritical carbon dioxide has been carried out for the first time and its optimal conditions have been determined. Using Raman spectroscopy, it has been shown that the metal content in polymer networks falls in the range 0.3–2.0 mass % depending on the type of the polymer and the crosslinking agent and on the crosslinking degree. Polymer samples including rhodium nanoparticles have been prepared by reducing immobilized rhodium acetylacetonate with molecular hydrogen. According to the preliminary data, the resulting samples possess extremely high activity as catalysts for hydrogenation of unsaturated compounds.  相似文献   

11.
The possibility of remote detection of SO2 in the 9-μm region of the spectrum by means of a TEA CO2 laser was theoretically and experimentally investigated with regard to the real state of the atmosphere and the contribution of background concentrations of H2O, CO2 and NH3 to absorption. For sounding along short paths (2L=2 km), the method of detection of small concentrations of SO2 (at the MPC level) with the use of the lines of the CO2-molecule regular transitions (00o1–02o0 band) has been devised and experimentally tested. It is shown that in sounding along longer paths (2L=6 km), a noticeable increase in sensitivity can be achieved by the generation lines of the CO2-molecule sequential 00o2–02o1 band. B. I. Stepanov Institute of Physics of the National Academy of Sciences of Belarus, 70, F. Skorina Ave., Minsk, 220072, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 4, pp. 508–515, July–August, 1998.  相似文献   

12.
Surface chemistry of carbon dioxide   总被引:5,自引:0,他引:5  
The review discusses how CO2 surface chemistry has developed since the early 1950s. Emphasis is given to studies of well-characterized surfaces of metals, oxides and some more complex systems involving in particular alkali modified surfaces and also of coadsorbed molecules.  相似文献   

13.
Sonolysis of carbon dioxide dissolved in water was performed from a standpoint of reducing this material in atmosphere. During one hour of sonication, the amount of CO2 decreased to about half at 5 degrees C under CO2-Ar atmosphere. The decreasing rate for CO2 followed the order Ar > He > H2 > N2 and it was down with increasing temperature in the range of 5-45 degrees C. The most favorable concentration for reducing CO2 was 0.03 (mole fraction of CO2 in gas phase). This concentration in gas phase means an equal mixture of CO2 and Ar in water, because CO2 is more soluble than Ar. Since carbon dioxide dissolved in water would be partly ionized, the roles of ions on the sonolysis were also examined. Gaseous reaction products were CO, H2 and a small amount of O2. Carbon monoxide and hydrogen might be obtained from CO2 and H2O by sonolysis, respectively. Both gases are fuel and react each other to C1 compounds such as methanol, and so on. Therefore, irradiation of ultrasonic waves should be an important technique for reducing CO2.  相似文献   

14.
The electronic absorption spectra of carbon dioxide and carbon disulfide have been reexamined. Model potential calculations have been used to calculate the energies of excited states in Rydberg approximation, and (npσ) and (npπ) Rydberg series have been assigned. For both molecules, the lowest excited 1Πg and 1Πu states are identified as Rydberg states. The lowest 1Σu+ state is mainly Rydberg for CO2, but contains some valence character for CS2, There is no evidence for transitions to additional valence states of these symmetries.It is shown that LCAOMO predictions about excited states can be misleading because of near-linear dependencies which arise in multicenter expansions. A consideration of the united atom orbitals for CO2 and CS2 predicts that there should be only the number of low-energy excited states which are found from the spectral analysis.  相似文献   

15.
The diffusive-kinetic model of porous carbon particles gasification is developed. The model considers the processes of heat and mass transfer both inside the porous particle and above it. Analysis of the model shows that heat and mass transfer have an influence to the gasification process to a marked degree. Gasification of carbon particle by carbon dioxide is impossible if particle temperature is lower about 850 K because concentration of carbon dioxide at the particle surface becomes lower than its equilibrium concentration. The rate of the carbon particle gasification is determined as a function of the porous particle internal surface area for different pressures and furnace temperatures.  相似文献   

16.
The electric quadrupole moments of carbon dioxide and carbon disulphide have been measured through the birefringence induced in gaseous samples over a range of temperature. The value for CO2, Θ = (-14·98 ± 0·50) × 10-40 C m2, is consistent with earlier measurements, showing that the temperature-independent hyperpolarizability contribution to the birefringence is insignificant. For CS2, Θ = (+12·0 ± 0·6) × 10-40 C m2. The positive sign reflects the increased importance of the π electron contribution to Θ in CS2.  相似文献   

17.
Hydrogen diffusion in the ordered hydride β-V2H is mainly brought about by a minority fraction of interstitial atoms on antistructural sites. Recently, this mechanism was elucidated in a single crystal QNS study at temperatures close to the critical point (390 K≤T≤440 K) where already an appreciable amount of antistructural sites is occupied. Here we use the positive muon as a radioactive hydrogen tracer in order to show that the same diffusion mechanism is also valid at low temperatures (80 K≤T≤320 K) where the different jump processes are very slow and where the fraction of antistructural atoms is tiny but nevertheless dominates the long range diffusion.  相似文献   

18.
The use of mid-infrared polarization spectroscopy (PS) for the detection of CO2 has been demonstrated. The P(13) and P(14) resonances of the (0 00 0)→(1 00 1) transition of CO2 were probed using a single-mode optical parametric generator system to produce a high-intensity laser beam at approximately 2.7 μm. The experiments were performed in an atmospheric pressure CO2 jet and also in a sub-atmospheric pressure gas cell. The experimental results were compared with the results of the time-dependent density-matrix equations using direct numerical integration. The Zeeman-state structure of the upper and lower energy levels was included in the multi-state formulation of the density-matrix equations. Fifty-eight Zeeman states and two bath levels were included in the numerical analysis of the P(14) transition. The measured and calculated PS line shapes were in good agreement, and the absolute experimental signal level agreed with the theoretical calculation to within a factor of five. Received: 20 March 2002 / Revised version: 16 August 2002 / Published online: 11 December 2002 RID="*" ID="*"Present address: Innovative Scientific Solutions Inc., 2766 Indian Ripple Road, Dayton, OH 45 440, USA RID="**" ID="**"Corresponding author. Fax: +1-765/494-0539, E-mail: Lucht@purdue.edu RID="***" ID="***"Present address: School of Mechanical Engineering, Purdue University, W. Lafayette, IN 47807-2040 USA  相似文献   

19.
Carbon dioxide (CO2) has been recently reported to possess an amorphous form, named "carbonia," structurally similar to other group-IV oxide glasses. By combining ab initio constant pressure molecular dynamics, density-functional perturbation theory, and experimental IR spectra, we show that carbonia, and possibly also phase VI, is not SiO2-like, and that instead it is partially tetrahedral containing also a sizable amount of carbon in threefold coordination, but no sixfold octahedral coordination. Enthalpic considerations suggest that carbonia is a metastable intermediate state of the transformation of molecular CO2 into fully tetrahedral phases.  相似文献   

20.
2 . The dependence of the ion production on the laser ablation parameters is investigated and the expansion dynamics of the ablated species is studied through time and space resolved measurements of the ion yield. We discuss our observations on the basis of reactions involving neutral and ionized carbon-based species. Received: 11 March 1997/Accepted: 30 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号