首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A series of poly(2-acetoxyethyl methacrylate)/polystyrene(PAEMA/PS) latex interpenetrating polymer networks(LIPNs) were prepared by seeded soap-free emulsion polymerization of styrene on the crosslinked PAEMA seed particles using an oil-soluble initiator.These PAEMA/PS LIPNs showed a well-defined phase-separated structure with PS phase dispersing in continuous PAEMA phase.The domain size of PS phase was found to depend on the crosslinking degree of PAEMA seed particles and the amount of second-stage styrene monomer.  相似文献   

2.
Polystyrene/polystyrene latex interpenetrating polymer networks (IPNs) were prepared by seeded emulsion polymerization of styrene–divinylbenzene mixtures in crosslinked monodisperse polystyrene particles. The resulting latexes comprised uniform nonspherical particles, e.g., ellipsodal and egg-like singlets, symmetry and asymmetric doublets, and ice cream cone-like and popcorn-like multiplets. The nonspherical particles, which were formed by separation of the second-stage monomer from the crosslinked seed network during swelling and polymerization, are excellent models for studying phase separation in IPN's. The degree of phase separation increased with increasing degree of crosslinking of the seed particles, monomer/polymer swelling ratio, polymerization temperature, and seed particle size, and with decreasing divinylbenzene concentration in the swelling monomer. The results were consistent with a thermodynamic analysis based on the elastic-retractile force of the polymer network, the monomer/polymer mixing force, and interfacial tension force.  相似文献   

3.
Uniformly sized porous polymer particles with different polarity namely poly(divinylbenzene), poly(vinyl acetate‐co‐divinylbenzene), poly(ethylene dimethacrylate), and poly (glycidyl methacrylate‐co‐ethylene dimethacrylate) were prepared in the micron‐size range by a seeded polymerization method. Parameters affecting the particle morphologies including monomer mixture content, porogen content, and polystyrene (PS) seed latexes were varied, and the morphologies of the resulting particles were investigated by scanning electron and confocal microscopy. The results obtained indicated that the particle shape depended dominantly on the molecular weight of the PS seed template. Deformed particles, including collapsed spheres and spheres with holes were obtained when high molecular weight PS seeds were used, whereas well‐defined polymer particles were produced easily by using low molecular weight seeds. The use of 1,1‐diphenylethylene as a chain terminator during seed polymerization is proposed in this work as an efficient method to lower molecular weight of PS in seed particles while keeping seed size small. This low molecular weight seed template retained its spherical geometry after swelling and polymerization with different second stage monomers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Macroporous functionalized polymer beads of poly(4‐vinylpyridine‐co‐1,4‐divinylbenzene) [P(VPy‐co‐DVB)] were prepared by a multistep polymerization, including a polystyrene (PS) shape template by emulsifier‐free emulsion polymerization, linear PS seeds by staged template suspension polymerization, and macroporous functionalized polymer beads of P(VPy‐co‐DVB) by multistep seeded polymerization. The polymer beads, having a cellular texture, were made of many small, spherical particles. The bead size was 10–50 μm, and the pore size was 0.1–1.5 μm. The polymer beads were used as supports for zirconocene catalysts in ethylene polymerization. They were very different from traditional polymer supports. The polymer beads could be exfoliated to yield many spherical particles dispersed in the resulting polyethylene particles during ethylene polymerization. The influence of the polymer beads on the catalytic behavior of the supported catalyst and morphology of the resulting polyethylene was investigated. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 873–880, 2003  相似文献   

5.
 Micron-sized mono-dispersed polystyrene (PS)/poly(n-butyl methacrylate) (PBMA) composite particles (PS/PBMA=2/1 by weight) having a heterogeneous structure in which many fine PBMA domains dispersed in a PS matrix near the particle surface were produced by seeded polymerization of n-butyl methacrylate (BMA) of which almost all had been absorbed by 1.8 μm-sized monodispersed PS seed particles utilizing the dynamic swelling method. The morphology was varied by changing the PS/BMA ratio and polymerization temperature. It was concluded that the swelling state of 2 μm-sized BMA-swollen PS particles in the seeded polymerization process is one of the important factors to control the morphology of the composite particles. Received: 27 November 1996 Accepted: 21 March 1997  相似文献   

6.
A strategy has been developed for the synthesis of novel amphiphilic conetworks (APCNs) of poly(N,N‐dimethyl acrylamide) (PDMAAm) and polydimethyl‐siloxane (PDMS) segments crosslinked with polyhydrosiloxanes. The synthesis proceeds in three steps in one pot (see Figure 2 for reactions and abbreviations): (1) the preparation of a charge containing three components (an asymmetric–telechelic macromonomer, MA‐PDMS‐V, plus two symmetric–telechelic crosslinkers, MA‐PDMS‐MA and V‐PDMS‐V), (2) the free‐radical terpolymerization of N,N‐dimethyl acrylamide, MA‐PDMS‐V, and MA‐PDMS‐MA into a slightly crosslinked and soluble graft of a PDMAAm backbone carrying‐PDMS‐V branches, and (3) the crosslinking of PDMS branches with polyhydrosiloxanes. The effects of key experimental parameters (e.g., composition, molecular weights, and initiator and crosslinker concentrations) on synthesis details and swelling behavior have been studied. The water uptake/permeability of APCNs is significantly increased by the addition of homo‐PDMAAm to graft charges, crosslinking of the graft, and, after the desirable morphology is stabilized, removing the homo‐PDMAAm by water extraction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 295–307, 2007  相似文献   

7.
Three kinds of micron-sized monodispersed polystyrene (PS)/ poly(styrene - divinylbenzene) composite particles were produced by two kinds of seeded copolymerizations of styrene (S) and divinylbenzene (DVB) (PS seed/ (S+DVB)=2/1, wt. ratio; S/DVB=1/1, molar ratio) in the presence of about 2 μm-sized monodispersed PS particles, and their morphologies were examined. One was produced by a seeded dispersion copolymerization where almost monomers and initiators exist in an ethanol/water (12.6/4.0, w/w) medium. The others two were produced by seeded copolymerizations with the dynamic swelling method where almost monomers exist in the monomer-swollen particles using 2, 2'-azobisisobutyronitrile in monomer-swollen PS seed particles or using 4, 4'-azobis (4-cyanopentanoic acid) in an ethanol/water (7/43, w/w) medium. In the former polymerization, the produced composite particles had a high dense crosslinked shell, whereas in the latter two polymerizations, they did the comparatively homogeneous crosslinked structures.  相似文献   

8.
 The effect of the weight ratio of seed polymer/monomer on the morphology of the poly(methyl methacrylate) (PMMA)/polystyrene (PS) monodispersed composite particles produced by batch seeded dispersion polymerization of styrene with 1.64-μm-sized monodispersed PMMA seed particles in a methanol/water medium (4/1 w/w) was examined. In the PMMA/PS weight ratios of 3/1 and 2/1, the composite particles had a clear morphology consisting of a PMMA core and a PS shell. In the ratio of 1/1, a lot of small PS domains were observed in the PMMA core though the PS shell was still formed. By stepwise addition of styrene monomer, the formation of the small PS domain was depressed and complete core/shell morphology was formed. Absorption/release treatments of toluene into/from the PMMA/PS (1/1 w/w) composite particles resulted in a drastic morphological change from the core/shell structure to a multi- layered one. Received: 2 February 1999 Accepted in revised form: 7 April  相似文献   

9.
For the purpose of extending the size range of polymer seed particles used in “dynamic swelling method” (DSM), first it was verified theoretically that the submicron-sized polymer particles produced by emulsion polymerization can also absorb a large amount of monomer by DSM in both equilibrium and kinetic control states. Next, on the basis of the theoretical results, experimentally about 2.6 μm-sized styrene-swollen polystyrene (PS) particles were prepared utilizing DSM in the presence of 0.64 μm-sized monodispersed PS seed particles produced by emulsifier-free emulsion polymerization. Moreover, 2.5 μm-sized monodispersed PS particles were produced by the addition of cupric chloride as a water-soluble inhibitor to depress the by-production of submicron-sized PS particles in the seeded polymerization at 30°C with 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) initiator. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2513–2519, 1998  相似文献   

10.
Polystyrene/polystyrene latex interpenetrating polymer networks (IPNs) were prepared by seeded emulsion polymerzation of styrene–divinylbenzene mixtures in crosslinked monodisperse polystyrene seed latexes. The resulting latexes comprised uniform nonspherical particles, which were formed by separation of the second-stage monomer from the crosslinked seed network during swelling and polymerization. The kinetics of phase separation were investigated by examining the changes in particle morphology using optical microscopy, which revealed that the phase separation was induced by the relaxation of the polymer chains before polymerization began and was enhanced by increased conversion. The thermodynamics of phase separation were investigated by analysis of the free-energy changes during swelling and polymerization, and the phase separation was described by a nucleation-and-growth mechanism. The results of this study have been applied to the design and synthesis of a series of uniform nonspherical particles of different morphology.  相似文献   

11.
 Micron-sized monodispersed polystyrene (PS)/poly(n-butyl methacrylate) composite particles were produced as follows. First, 1.77 μm-sized monodispersed PS seed particles produced by dispersion polymerization were dispersed in ethanol/water (1/2, w/w) medium dissolving poly(vinyl alcohol) as a stabilizer. n-Butyl methacrylate (BMA) monomer dissolving benzoyl peroxide initiator was emulsified in ethanol/water (1/2, w/w) solution of sodium dodecyl sulfate as emulsifier with ultrasonic homogenizer, and the BMA monomer emulsion was mixed with the PS seed emulsion. The PS seed particles absorbed with a large amount of BMA (about 150 times weight of the seed particles) for 2 h to about 10 μm in diameter while keeping good monodispersity and BMA droplets disappeared finally. The seeded polymerization was carried out at 70 °C after a certain amount of water was added to depress the redissolving of BMA from the swollen particles into the medium by raising from room temperature to the polymerzation temperature. Received: 21 February 1996 Accepted: 4 September 1996  相似文献   

12.
4 μm-sized monodispersed cross-linked polymer particles having hollow structure were produced as follows. First, 1.7 μm-sized monodispersed polystyrene (PS) seed particles produced by dispersion polymerization were dispersed in ethanol/water (7/3, w/w) solution in which divinylbenzene (DVB), benzoyl peroxide (BPO), poly(vinyl alcohol), and toluene was dissolved. The PS seed particles were swollen with DVB, toluene and BPO maintaining high monodispersity throughout the dynamic swelling process where water was slowly added continuously. And then, the seeded polymerization of the (toluene/DVB)-swollen PS particles was carried out.  相似文献   

13.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

14.
Conversion versus time curves were measured for poly(N-isopropylacrylamide) microgel latexes prepared by polymerization in water with sodium dodecyl sulfate, SDS. Polymerization rates increased with temperature with methylenebisacrylamide crosslinking monomer consumed faster thanN-isopropylacrylamide. The particle diameter decreased with increasing concentrations of SDS in the polymerization recipe and there was evidence that the rate of polymerization increased somewhat with SDS concentration. Particle formation occurred by homogeneous nucleation as micelles were absent.Comparison of particle size distributions from dynamic light scattering to those from a centrifugal sizer led to the conclusion that larger particles within a specific latex were less swollen with acetonitrile than were the smaller ones. This was interpreted as evidence for the polymer in larger particles having a higher crosslink density. Particle swelling was estimated from swelling ratios defined as the particle volume at 25 °C divided by the volume at 50 °C. In the absence of crosslinking poly(N-isopropylacrylamide) linear chains would disolve at 25 °C. The swelling results indicated that the average crosslink density in the particles decreased with conversion. This was explained by the observation that the methylenebisacrylamide was consumed more quickly and is typical of crosslinking in emulsion polymerization where polymer particles have high polymer concentrations at their birth.  相似文献   

15.
采用完全无皂种子乳液聚合技术合成了粒径窄分布的P(MMA-EA-MAA)乳胶粒,通过对上述胶乳进行碱处理,制备出了具有空腔结构和多孔结构的聚合物乳胶粒,研究了交联剂的种类和用量对聚合过程、胶粒特性及胶粒结构形态的影响.结果表明,体系中加入交联剂后,单体转化率都有不同程度的提高;随交联剂用量的增加,乳胶粒粒径略有减小,交联剂用量较高时,乳胶粒粒径分布加宽;二乙烯基苯(DVB)的交联效率稍高于双甲基丙烯酸乙二醇酯(EGDMA);不加入交联剂及EGDMA用量低于0.5%时,处理后乳胶粒呈空腔结构,加入DVB及EGDMA用量高于1.0%时,处理后乳胶粒呈多孔结构,并且乳胶粒体积增量随交联剂用量的增加而减小.  相似文献   

16.
Thermoresponsive colloidal particles were prepared by seeded precipitation polymerization of N-isopropylacrylamide (NIPAM) in the presence of a crosslinking monomer, N,N-methylenebisacrylamide (MBA), using polystyrene latex particles (ca. 50 nm in diameter) as seeds in aqueous dispersion. Phase transitions of the prepared poly(N-isopropylacrylamide), PNIPAM, shells on polystyrene cores were studied in comparison to colloidal PNIPAM microgel particles, in H2O and/or in D2O by dynamic light scattering, microcalorimetry and by 1H NMR spectroscopy including the measurements of spin–lattice (T1) and spin–spin (T2) relaxation times for the protons of PNIPAM. As expected, the seed particles grew in hydrodynamic size during the crosslinking polymerization of NIPAM, and a larger NIPAM to seed mass ratio in the polymerization batch led to a larger increase of particle size indicating a product coated with a thicker PNIPAM shell. Broader microcalorimetric endotherms of dehydration were observed for crosslinked PNIPAM on the solid cores compared to the PNIPAM microgels and also an increase of the transition temperature was observed. The calorimetric results were complemented by the NMR spectroscopy data of the 1H-signal intensities upon heating in D2O, showing that the phase transition of crosslinked PNIPAM on polystyrene core shifts towards higher temperatures when compared to the microgels, and also that the temperature range of the transition is broader.  相似文献   

17.
Hyperbranched fluoropolymers (HBFPs), based on benzyl ether linkages and having a large number of pentafluorophenyl chain ends, were crosslinked by a reaction with diamino-terminated poly(ethylene glycol) (PEG) or diamino-terminated poly(dimethyl siloxane) (PDMS) to form hyperbranched–linear copolymer networks of different compositions, structures, and properties. The crosslinking reactions involved the nucleophilic aromatic substitution of the pentafluorophenyl para-fluorines of HBFP by the amine functionalities of the respective telechelic linear segments. The contact angles, differential scanning calorimetry, thermogravimetric analysis, tensile measurements, and atomic force microscopy (AFM) were used to characterize the resulting network film samples. The surface wettability of the crosslinked materials was affected by the nature and amount of the linear polymer crosslinking agent employed. Amphiphilic polymer networks were formed by the incorporation of diamino-terminated PEG as a crosslinker, whereas diamino-terminated PDMS produced polymer networks of a hydrophobic character. The mechanical properties improved upon crosslinking, as measured by tensile testing. The mechanical integrity of the films was also found to improve upon crosslinking, as measured by AFM machining protocols. The AFM images revealed topographical morphologies that appeared to be the result of phase segregation of HBFP from PEG or PDMS; the dimensions of the phase-segregated domains were dependent on the stoichiometry of HBFP to the linear polymer and the thickness of the coating. As the content of PEG increased, fouling by human fibrinogen, used as a model protein, decreased. Further studies are in progress to determine the effects of the surface composition, morphology, and topography on the biofouling characteristics. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3531–3540, 2003  相似文献   

18.
Submicron-sized peanut-shaped poly(methyl methacrylate)/polystyrene(PMMA/PS) particles were successfully synthesized by seeded soap-free emulsion polymerization of styrene on the spherical crosslinked PMMA seed particles.The obtained peanut-shaped particles showed a novel internal morphology:PS phase formed one domain which linked to the other domain having PMMA core encased by PS shell.  相似文献   

19.
This article reports the synthesis, characterization, and damping characteristics of semi‐interpenetrating (semi‐IPN) latex systems composed of poly n‐butyl acrylate (PBA) core and poly n‐butyl methacrylate (PBMA) shell. The IPN's were prepared by seeded emulsion polymerization using crosslinked PBA seeds with varying crosslinker (m‐diisopropenyl benzene) concentration. The polymer weight ratio in the first and second stage polymerization is maintained at 1:1 in all the cases. The particle size determined by dynamic light scattering shows a decrease in the shell thickness with increasing crosslinker concentration of the seed. The mechanical properties, like Shore A hardness of the films, increased from 18 to 65 when the crosslinker concentration is increased from 0 to 4.8 mol%. The dynamic mechanical studies show that the modulus value of the IPN's is below that of non‐crosslinked films, and the value depends upon the crosslink density of the seed. Mechanical models, such as the Kerner's model and the Takayanagi's model, were used to explain the variation in the dynamic mechanical properties with the degree of seed crosslinking. The study indicates lower bound (rubbery) behavior for the films with lightly crosslinked cores. The study also shows that, at lower crosslinker concentration enhanced phase separation and better damping properties are achieved but at higher cross linker concentration (>2 mol%) greater interpenetration of the shell monomer to the cores takes place and tough films, with reduced damping properties are formed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Gel‐type poly(styrene‐co‐divinylbenzene) beads (PS bead) were used as a carrier to encapsulate metallocene catalysts through a simple swelling‐shrinking procedure. The catalytic species were homogeneously distributed in the PS bead particle. The catalyst exhibited high and stable ethylene polymerization and ethylene/1‐hexene copolymerization activity affording uniform spherical polymer particles (1 mm). Polymerization rate profiles exhibited slow initiation and stable increase in polymerization activity with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号