首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are widespread environmental pollutants that are generated by incomplete combustion and by atmospheric transformation of polycyclic aromatic hydrocarbons (PAHs). Many nitro-PAH compounds are potent genotoxins and some are direct acting mutagens. Detection of nitro-PAHs in aerosols is complicated by small sample sizes and nitro-PAH abundances that are 1–2 orders of magnitude less than analogous unsubstituted PAHs. Selective detection of several nitro-PAHs by using laser desorption ionization time-of-flight mass spectrometry in negative ion mode has been achieved. Desorption and ionization of nitro-PAHs were effected by using pulsed UV radiation at 266 and 213 ran. Intense molecular anions were observed in addition to fragments identified as CN? and NO 2 ? , which were characteristic indicators of the presence of nitro-PAHs. Selective detection of nitro-PAHs in negative ion mode was demonstrated in the analysis of a diesel particulate sample.  相似文献   

2.
3.
Infrared matrix-assisted laser desorption/ionization (IR-MALDI) of the polyaromatic hydrocarbons (PAHs) anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene was performed using a 10.6-microm CO2 laser and a liquid matrix. Sulfolane (tetrahydrothiophene 1,1-dioxide) was found to be an effective matrix for PAH ionization: mass spectra obtained with a sulfolane matrix contain an intense molecular ion peak; interference from PAH fragment and matrix peaks is negligible in all cases. The main limitation of the sulfolane matrix is sample evaporation after 3 to 5 min in vacuum. This sample lifetime can be increased to between 15 and 30 min using a 2:1 (v/v) mixture of sulfolane and glycerol, but the resulting spectra have greater matrix interference and decreased shot-to-shot signal stability.  相似文献   

4.
Microprobe two-step laser desorption/laser ionization mass spectrometry (μL2MS) and gas chromatography/mass spectrometry (GC/MS) were used to analyze polycyclic aromatic hydrocarbons (PAHs) in ancient terrestrial rocks. μL2MS provides an in situ analysis of very small samples, records the PAHs with no isomer information, and gives quantitative data on the degree of alkylation of a given PAH series over the complete mass range. GC/MS provides isomer separation and quantitation of PAHs in bitumen but not kerogen, and is limited by sample size. Combination of these techniques allows analysis of very small samples by μL2MS with GC/MS confirmation of isomer distributions of the solvent extractable components (bitumen). It was found that the concentration of bitumen within the rock samples affects the PAH alkylation signal for μL2MS. At low bitumen concentrations μL2MS can produce pyrolysis products from kerogen that is present; however, as bitumen concentrations increase, the PAH distribution from bitumen dominates the signal.  相似文献   

5.
Daniel JM  Ehala S  Friess SD  Zenobi R 《The Analyst》2004,129(7):574-578
A new technique is presented for the coupling of atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) mass spectrometry with liquid delivery systems. Mass measurements of polymers and peptides are demonstrated using a co-dissolved matrix, e.g. alpha-cyano-4-hydroxycinnamic acid (HCCA). Improvements in terms of sensitivity are achieved by optimizing the shape und control of the exit capillary and by using a laser (355 nm) at a 1 kHz repetition rate. Two calibration experiments promise a good applicability of the presented coupling method for quantitative measurements. The limit of detection achieved so far is 500 nM for peptides in methanol solution containing 25 mM HCCA.  相似文献   

6.
A novel method for acquisition and numerical analysis of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectral data is described. The digitized ion current transient from each consecutive laser shot is first acquired and stored independently. Subsequently, statistical correlation parameters between all stored transients are computed. We illustrate the uses of this event-by-event analysis method for studies of sample surface heterogeneity as well as for elucidating the mechanisms of ion formation in MALDI. Other potential applications of the method are also outlined.  相似文献   

7.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has successfully been used to differentiate pseudo-enantiomeric (isotopically labelled) amino acids by using cyclodextrin as complexing host. By using different pseudo-enantiomeric mixtures (i.e. R(Dn) + S; and R + S(Dn)), it has been demonstrated that the preference of cyclodextrin for S-enantiomers is not due to the size differences caused by the hydrogen/deuterium substitution. It is postulated that this method can be extended to differentiate enantiomers (and determine enantiomeric excess) by using a pair of enantiomeric hosts, as demonstrated previously using other ionization techniques, but with much higher sensitivity.  相似文献   

8.
The S-nitrosylation of proteins is involved in the trafficking of nitric oxide (NO) in intra- and extracellular milieus. To establish a mass spectrometric method for identifying this post-translational modification of proteins, a synthetic peptide and transthyretin were S-nitrosylated in vitro and analyzed by electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The intact molecular ion species of nitrosylated compounds was identified in the ESI mass spectrum without elimination of the NO group. However, the labile nature of the S-NO bond was evident when the in-source fragmentation efficiently generated [M + H - 30](+) ions. The decomposition was prominent for multiply charged transthyretin ions with high charge states under ordinary ESI conditions, indicating that the application of minimum nozzle potentials was essential for delineating the stoichiometry of nitrosylation in proteins. With MALDI, the S-NO bond cleavage occurred during the ionization process, and the subsequent reduction generated [M + H - 29](+) ions.  相似文献   

9.
The trend of miniaturization in bioanalytical chemistry is shifting from technical development to practical application. In matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), progress in miniaturizing sample spots has been driven by the needs to increase sensitivity and speed, to interface with other analytical microtechnologies, and to develop miniaturized instrumentation.We review recent developments in miniaturizing sample spots for MALDI-MS. We cover both target modification and microdispensing technologies, and we emphasize the benefits with respect to sensitivity, throughput and automation.We hope that this review will encourage further method development and application of miniaturized sample spots for MALDI-MS, so as to expand applications in analytical chemistry, protein science and molecular biology.  相似文献   

10.
Various types of ionization of organotellurium compounds in mass-spectrometric study are considered, with diphenyl telluroxide as example. The mass spectra of diphenyl telluroxide are presented. The possibility of applying surface-activated and matrix-assisted laser desorption/ionization mass spectrometry to organotellurium compounds is examined.  相似文献   

11.
One problem of matrix-assisted laser desorption ionization coupled to time-of-flight mass spectrometry is the moderate mass accuracy that typically can be obtained in routine applications, Here we report improved mass accuracy for peptides, even when low amounts and complex peptide mixtures are used. A new procedure for preparing matrix surfaces is used, and there is no need to mix the matrix with the sample or to add internal standards. Examples are shown with a mass accuracy better than 50 ppm in a peptide mixture. Peptide mapping as well as sequencing by creating “ragged ends” or “ladder sequencing” should benefit especially from the improved mass accuracy.  相似文献   

12.
The identification of isoforms is one of the great challenges in proteomics due to the large number of identical amino acids preventing their separations by two-dimensional electrophoresis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) has become a rapid and sensitive tool in proteomics, notably with the new instrumental improvements. In this study, we used several acquisition modes of MALDI-TOFMS to identify isoforms of porcine glutathiones S-transferase. The use of multiple proteases coupled to the different acquisition modes of MALDI-TOFMS (linear, reflectron, post-source decay (PSD) and in-source decay, positive and negative modes) allowed the identification of two sequences. Moreover, a third sequence is pointed out from a PSD study of a tryptic ion revealing the modification of the amino acid tyrosine 146 to phenylalanine.  相似文献   

13.
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to detect an immune complex formed between beta-lactoglobulin and polyclonal anti-beta-lactoglobulin antibody in the gas phase. The most important experimental parameters to detect such a specific antibody-antigen complex by MALDI were the use of solutions at near-neutral pH and of sinapinic acid matrix prepared by the dried-droplet method. Under such conditions, predominantly one but also two molecules of antigen protein were complexed by the antibody. Specific formation of the antibody-antigen complex was confirmed by performing competitive reactions. Addition of antibody to a 1:1 mixture of beta-lactoglobulin and one control protein resulted not only in the appearance of the expected antibody-antigen complex, but also in a strong decrease in the free beta-lactoglobulin signal, while the abundance of the control protein was not influenced.  相似文献   

14.
In this report, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was used to study the binding interactions between calmodulin and two target peptides (melittin and substance P). Various matrix conditions were tested and the less acidic matrix DHAP and THAP were found to favor the survival of the intact calcium-calmodulin as well as the calmodulin-peptide complexes. However, the application of direct MALDI-MS to detect the intact complexes turned out to be very difficult due to the dissociation of the complexes and the formation of nonspecific aggregates. In contrast, the specific binding of the target peptides to calmodulin could be easily deduced using intensity-fading (IF) MALDI-MS. Compared with the nonbinding control, clear reduction in the ion abundances of the target peptides was observed with the addition of calmodulin. Relative binding affinities of different peptides towards the protein could also be estimated using IF-MALDI-MS. This study may extend the application of IF-MALDI-MS in the analysis of noncovalent complexes and offer a perspective into the utility of MALDI-MS as an alternative approach to study the peptides binding to calmodulin.  相似文献   

15.
A variety of surfactants have been tested as matrix-ion suppressors for the analysis of small molecules by matrix-assisted laser desorption/ionization time-of flight mass spectrometry. Their addition to the common matrix alpha-cyano-4-hydroxycinnamic acid (CHCA) greatly reduces the presence of matrix-related ions when added at the appropriate mole ratio of CHCA/surfactant, while still allowing the analyte signal to be observed. A range of cationic quaternary ammonium surfactants, as well as a neutral and anionic surfactant, was tested for the analysis of phenolics, phenolic acids, peptides and caffeine. It was found that the cationic surfactants, particularly cetyltrimethylammonium bromide (CTAB), were suitable for the analysis of acidic analytes. The anionic surfactant, sodium dodecyl sulfate, showed promise for peptide analysis. For trialanine, the detection limit was observed to be in the 100 femtomole range. The final matrix/surfactant mole ratio was a critical parameter for matrix ion suppression and resulting intensity of analyte signal. It was also found that the mass resolution of analytes was improved by 25-75%. Depth profiling of sample spots, by varying the number of laser shots, revealed that the surfactants tend to migrate toward the top of the droplet during crystallization, and that it is likely that the analyte is also enriched in this surface region. Here, higher analyte/surfactant concentration would reduce matrix-matrix interactions (known to be a source of matrix-derived ions).  相似文献   

16.
Metal labelling of peptides and proteins using high-affinity metal-chelating compounds has found widespread applications in the medical and bioanalytical fields. In the present study we investigated the analysis of peptides derivatized either with cysteine- or amino group-directed metal-bound DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) chelators in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The metal complexes of DOTA were shown to be stable under MALDI-MS conditions. The introduction of the metal label led in a number of cases to significantly increased signal-to-noise (S/N) values and thus improved sensitivity of the labelled peptides compared to their unlabelled counterparts, especially for multiply labelled peptides. The presence of the labels did alter the tandem mass spectrometric (MS/MS) behaviour, namely the formation of sequence specific a-, b- and y-ion series, in dependence of the position of the label within the peptide sequence. For cysteine-derivatized peptides several label-specific reporter ions and characteristic immonium ions could be identified. Amino-directed labelling led only to the formation of characteristic immonium ions in ε-amino groups of lysine, whereas N-terminal labelling in some cases led to the formation of a(1)- and b(1)-ions. The results clearly show that MALDI-MS is suitable for the analysis of metal-labelled peptides, which was also confirmed in liquid chromatography (LC)/MALDI-based identification of proteins in a model protein mixture labelled with Cys-reactive DOTA. Here, in comparison to a run with alkylated cysteines, more than 50% more cysteine-containing peptides were identified.  相似文献   

17.
18.
In the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) analysis of various compounds synthesized in our laboratory, strong [M - H]+ ion peaks were often observed for the molecules with tertiary amino groups. In this work, the MALDI TOF MS behavior of two groups of compounds that incorporate tertiary amino moieties was investigated. One group is bisurea dimethylanilines (BUDMAs) prepared for the study of molecular recognition in thermoplastic elastomers, and the other group is the poly(propylene imine) diaminobutane dendrimers. The results clearly demonstrate the appearance of the [M - H]+ ions. In order to understand the possible mechanisms for the generation of these ions, a series of model compounds, ranging from primary to tertiary amines, were investigated. Unlike the tertiary amines, no [M - H]+ ion peaks were recorded for the primary amines, and only barely detectable ones, if any, for some secondary amines. It appears that the tertiary amino groups play an important role in the formation of these ions. In addition to MALDI TOF MS analysis, these samples were also applied to electrospray ionization (ESI) MS where no [M - H]+ ions were observed. The results indicate that the generation of [M - H]+ ion is due to the unique MALDI conditions and is likely to be formed via dehydrogenation of a protonated tertiary amine resulting in an N=C double bond. The absence of [M - H]+ ion peaks for the primary and secondary amines is probably because upon their formation these ions could easily transfer one proton to the corresponding amines in the MALDI gas-phase plume, yielding neutral imines that cannot be detected by MS.  相似文献   

19.
The ionization of nucleosides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was systematically investigated using adenine (A), thymine (T), guanine (G) and cytosine (C) with several common matrices. Experimental results of the protonation and deprotonation of the bases of A, T, G and C in the matrices 2,5-dihydroxybenzoic acid (2,5-DHB), alpha-cyano-4-hydroxycinnamic acid (alpha-CHCA) and 3-hydroxypicolinic acid (3-HPA) provide an insight into the ionization mechanism of oligonucleotides in MALDI. It was found that the low ion signal from DNA in poly-G in MALDI as reported in earlier work could be attributed to the fact that the base of G is difficult to ionize. Our results suggest that the ionization of DNA in MALDI is dominated by the protonation and deprotonation of bases and it is basically independent of the backbone of DNA. Both the protonation and deprotonation are strongly structure dependent. The protonation is dominated by pre-protonation before laser ablation, while the deprotonation is controlled by the thermal reaction.  相似文献   

20.
The partial contribution of polycyclic aromatic hydrocarbons (PAH), capable of being detected by gas chromatography (GC-PAH), both to the total mass of the extractable organic fraction of flame-formed carbon particulates and to its UV-visible absorption and fluorescence spectra, has been determined by previous work. This contribution indicates the presence of PAH of molecular weight (MW) greater than 400 Da not accessible to conventional analysis. The detection of species in this higher MW range is important for both their potential toxicology and their possible role in soot formation. In the present work extracts of soots have been analyzed by linear mode laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF-MS) to extend the MW range that can be analyzed beyond the GC-PAH. The results have been compared with both analysis by reflector mode LDI-TOF-MS and the MW evaluation obtained by SEC analysis, as the shortcomings and advantages of both techniques appear to be complementary. Matching the results from the two techniques could give interesting insights in the molecular mass range between GC-PAH and the first soot particles (of mass > 2000 Da). Mass spectra in this molecular mass range have been obtained with a main ion sequence spacing of 24 Th and a minor ion sequence also with a spacing of 24 Th but off-set by 12 Th with respect to the main sequence. The two ion progressions have been interpreted by attributing the predominant peaks mainly to PAH with even-carbon numbers and the smaller ones to cyclopenta-fused ring PAH. These distributions indicate the occurrence of two competitive mechanisms in the growth of PAH and soot nucleation, i.e. the addition of acetylene (HACA mechanism) and the incorporation of pentagons by large polycyclic aromatic molecules into their aromatic bonding network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号