首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ИжУЧАЕтсь кРИтИЧЕск Аь скОРОсть УБыВАНИь Дль РАжлИЧНых МЕтОДОВ сУ ММИРОВАНИь. пРОтОтИпОМ тАкИх РЕж УльтАтОВ ьВльЕтсь сл ЕДУУЩЕЕ УтВЕРжДЕНИЕ, ОтНОсьЩ ЕЕсь к МЕтОДУ сУММИРОВАНИ ь АБЕль: ЕслИ $$a_n = O(n^p ) \Pi pI x \to \infty $$ Дль НЕкОтОРОгОp И $$\sum {a_n e^{ - nx} = O(e^{ - \eta (x)/x} ) \Pi pI x \to + 0,} $$ пРИx→+0, гДЕ ФУНкцИьη УДОВлЕт ВОРьЕт УслОВИУ $$\mathop {\lim \sup }\limits_{x \to + 0} \eta (x) = \infty ,$$ тО кОЁФФИцИЕНтыa n РАВ Ны НУлУ Дль ВсЕхn. Мы пОкАжыВАЕМ, ЧтО пОД ОБНыИ РЕжУльтАт ИМЕЕ т МЕстО Дль шИРОкОгО клАссА МЕтОДОВ сУММИРОВАНИ ь.  相似文献   

2.
ПустьS n (f, x) — суммы Фурье периодической сумми руемой функцииf(x). Доказано, что если фун кцияФ(u), определенная, непрерывная и выпукл ая вверх для u≧0 (Ф(0)=0), удовлетворяет ус ловию (1) $$\int\limits_{ + 0} {\frac{{du}}{{\Phi (u)}}< \infty ,} $$ то имеет место следую щее вложение классов функций (2) $$S(\Phi ) = \left\{ {f:\mathop {\max }\limits_x \sum\limits_{n = o}^\infty \Phi (\left| {f(x) - S_n (fx)} \right|)< \infty } \right\} \subset Lip1,$$ и, более того, при услов ии (1) все функции из кла ссаS(Ф) непрерывно дифферен цируемы, а их производные имеют равномерно сходящие ся ряды Фурье. Установлено также, чт о если функция Ф удовл етворяет условию lim supФ(u/2)/Ф(u)<1, то условие (1) является н е только достаточным, но и необходимым для влож ения (2).  相似文献   

3.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

4.
В статье рассматрива ются одномерные и дву мерные тригонометрические ряды с моно-тонными коэффициентами. Дает ся пример двойного тригонометрическог о ряда (1) $$\mathop \sum \limits_{n,k = 1}^\infty a_{nk} \sin nx\sin ky,$$ , коэффициенты которо го монотонны поk и поп, любая последовательность \(\{ S_{n_k m_k } (x,y)\} _{k = 1}^\infty\) прямоугольных части чных сумм ряда (1), где min(n k ,m k )→∞ приk→∞, расходится по чти всюду на (0,n)2. Кроме того, изучается мера множеств нулей ф ункций (2) $$f(x) = \frac{{a_0 }}{2} + \mathop \sum \limits_{n = 1}^{a_0 } a_n \cos nx\tilde f(x) = \mathop \sum \limits_{n = 1}^\infty a_n \sin nx,$$ , гдеа n ↓ приn→ ∞, и доказ ьшается несколько те орем о скорости убывания ко эффициентовa n рядов (2), если все част ичные суммыS n (f,x) или \(S_n (\tilde f,x)\) дляn=1,2,... неотрицате ль-ны на (0,n).  相似文献   

5.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

6.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

7.
Пусть {? ik(x):i, k=1, 2,...} — орто нормированная систе ма в пространстве с полож ительной мерой и {a ik} — последов ательность действит ельных чисел, для которой $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \kappa ^2 (i,k)< \infty ,$$ где {x(i, K)} — определенна я неубывающая последовательность положительных чисел. Тогда суммаf(x) двойног о ортогонального ряд а \(\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) существует в смысле с ходимости в метрикеL 2 и сходимос ти почти всюду. Изучае тся порядок так называем ой сильной аппроксимац ииf(x) (при коэффициентн ых условиях) прямоуголь ными частными суммами \(s_{mn} (x) = \mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik} \varphi _{ik} (x)\) . Основной ре зультат состоит в сле дующем. Если {λj(m):m=1, 2,...} — неубывающи е последовательност и положительньк чисел, стремящиеся к ∞ и такие, что \(\mathop {\lim \sup }\limits_{m \to \infty } \lambda _j (2m)/\lambda _j (m)< \sqrt 2 \) дляj=1,2, и если $$\mathop \sum \limits_{\iota = 1}^\infty \mathop \sum \limits_{\kappa = 1}^\infty a_{ik}^2 \left[ {\log log (i + 3)} \right]^2 \left[ {\log log (k + 3)} \right]^2 (\lambda _1^2 (i) + \lambda _2^2 (k))< \infty ,$$ TO ПОЧТИ ВСЮДУ $$\left\{ {\frac{1}{{mn}}\mathop \sum \limits_{i = 1}^m \mathop \sum \limits_{\kappa = 1}^m \left[ {s_{ik} (x) - f(x)} \right]^2 } \right\}^{1/2} = o_x (\lambda _1^{ - 1} (m) + \lambda _2^{ - 1} (n))$$ при min (m, n) → ∞.  相似文献   

8.
Пусть {Xj} - строго стац ионарная последоват ельностьс ?перемешиванием, EXj-Q,E¦-X j¦r< для некоторогоr>2. Положим \(S_n = \mathop \sum \limits_{j = 1}^n X_j \) . Ибрагимов (1962) доказал, что если приn →∞, то 1 $$\mathop {\lim }\limits_{n \to \infty } P\{ S_n /\sigma _n< x\} = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^x e^{{{ - u^2 } \mathord{\left/ {\vphantom {{ - u^2 } 2}} \right. \kern-\nulldelimiterspace} 2}} du.$$ В работе установлено, что при указанных выш е условиях в этой центральной пр едельной теореме имеет место т акже и сходимостьr-ых абсолютных моментов, т.е. если σ n 2 →∞ приn→ ∞, то $$\mathop {\lim }\limits_{n \to \infty } E|S_n /\sigma _n |^r = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^{ + \infty } |u|^r e^{ - u^2 /2} du.$$ Этот результат обобщ ает один более ранний результат автора (1980 г.).  相似文献   

9.
Основной целью работ ы является обобщение одного результата Кратца и Т раутнера [4], известного для одном ерных функциональны х рядов, на кратные ряды. Этот рез ультат касается суммируемо сти функционального ряда почти всюду при слабых пред положениях. В частности, он примен им к суммируемости по Чезаро и по Риссу. Мы рассматриваемd-кр атный ряд $$\mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x), \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d }^2< \infty $$ и предполагается, что функции \(f_{k_1 ,...,k_d } (x)\) интегрируе мы по пространству с полож ительной мерой и имеют почти вс юду ограниченные фун кции Лебега для метода суммирова ния Т. Метод Т определяетсяd-мерной матрицей \(T = \{ a_{m_1 ,...,m_d ;k_1 ,...,k_d } \} \) сл едующим образом: $$t_{m_1 ,...,m_d } (x) = \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty a_{m_1 ,...,m_d ;k_1 ,...,k_d } c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x).$$ Эти средние существу ют, поскольку мы предп олагаем, что \(a_{m_1 ,...,m_d ;k_1 ,...,k_d } = 0\) ,если max(k 1,...,k d) достаточно вели к (в зависимости, конеч но, отm 1,...,m d). При некоторых дополнительных усло виях на матрицуТ (см. (7)– (9) в разделе 3) устанавлива ется почти всюду регулярная схо димость средних \(t_{m_1 ,...,m_d } (x) \user2{} \user2{(}m_1 \user2{,}...\user2{,}m_d \user2{)} \to \infty \) . Как вспомогательный результат, в работе об общается теорема Алексича [1] о сх одимости почти всюду некоторы х подпоследовательн остей частных сумм функцио нального ряда.  相似文献   

10.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

11.
The solution of the problem of finding the quantity 1 $$|\vartriangle \mathop n\nolimits_{v_k }^{\sup } | \leqslant 1 1\begin{array}{*{20}c} {1nf} \\ {(k) = 1/_k } \\ {(k = 0, \pm 1. \pm 2, ...)} \\ \end{array} || /^{(n)} (x)||_C ( - \infty ,\infty )'$$ obtained by Subbotin, is extended to the case of formally self-adjoint differential operators with constant coefficients and corresponding generalized differences.  相似文献   

12.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

13.
We consider the integral convolution equation on the half-line or on a finite interval with kernel $$K(x - t) = \int_a^b {e^{ - \left| {x - t} \right|s} d\sigma (s)} $$ with an alternating measure under the conditions $$K(x) > 0, \int_a^b {\frac{1}{s}\left| {d\sigma (s)} \right| < + \infty } , \int_{ - \infty }^\infty {K(x)dx = 2} \int_a^b {\frac{1}{s}d\sigma (s) \leqslant 1} .$$ The solution of the nonlinear Ambartsumyan equation $$\varphi (s) = 1 + \varphi (s) \int_a^b {\frac{{\varphi (p)}}{{s + p}}d\sigma (p)} ,$$ is constructed; it can be effectively used for solving the original convolution equation.  相似文献   

14.
In this note we show that an infinitely divisible (i.d.) distribution function F is Poisson if and only if it satisfies the conditions F(+0) > 0, for any 0 < ∈ < 1 $$\int_{ - \infty }^{I - E} {\frac{{\left| x \right|}}{{1 + \left| x \right|}}} dF = 0$$ and for any 0 < β < 1 $$\int_0^\infty {e^{\alpha xln(x + 1)} } dF< \infty $$   相似文献   

15.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

16.
ПустьΦN-функция Юнг а со свойствами $$\Phi (x)x^{ - 1} \downarrow 0, \exists \alpha > 1 \Phi (x)x^{ - \alpha } \uparrow (x \downarrow 0),$$ илиΦ(х)=х, {λk} — положи тельная, неубывающая последовательность и $$S_\Phi \{ \lambda \} = \left\{ {f:\left\| {\sum\limits_{k = 0}^\infty \Phi (\lambda _k |f - s_k |)} \right\|_\infty< \infty } \right\}.$$ В работе найдены необ ходимые и достаточны е условия для вложений $$S_\Phi \{ \lambda \} \subset W^r F(r \geqq 0),$$ , гдеF=C, L , Lip α (0<α≦1). С этой то чки зрения рассматриваются и др угие классы (например, \(W^r H^\omega ,\tilde W^r F\) ).  相似文献   

17.
18.
LetL(x) denote the number of square full integers ≤x. By a square-full integer, we mean a positive integer all of whose prime factors have multiplicity at least two. It is well known that $$\left. {L(x)} \right| \sim \frac{{\zeta ({3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2})}}{{\zeta (3)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})}}{{\zeta (2)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ where ζ(s) denotes the Riemann Zeta function. Let Δ(x) denote the error function in the asymptotic formula forL(x). On the basis of the Riemann hypothesis (R.H.), it is known that \(\Delta (x) = O(x^{\tfrac{{13}}{{81}} + \varepsilon } )\) for every ε>0. In this paper, we prove the following results on the assumption of R.H.: (1) $$\frac{1}{x}\int\limits_1^x {\Delta (t)dt} = O(x^{\tfrac{1}{{12}} + \varepsilon } ),$$ (2) $$\int\limits_1^x {\frac{{\Delta (t)}}{t}\log } ^{v - 1} \left( {\frac{x}{t}} \right) = O(x^{\tfrac{1}{{12}} + \varepsilon } )$$ for any integer ν≥1. In fact, we prove some general results and deduce the above from them. On the basis of (1) and (2) above, we conjecture that \(\Delta (x) = O(x^{{1 \mathord{\left/ {\vphantom {1 {12}}} \right. \kern-0em} {12}} + \varepsilon } )\) under the assumption of R.H.  相似文献   

19.
Пусть \(f(z) = \mathop \sum \limits_{k = 0}^\infty a_k z^k ,a_0 \ne 0, a_k \geqq 0 (k \geqq 0)\) — целая функци я,π n — класс обыкновен ных алгебраических мног очленов степени не вы ше \(n,a \lambda _n (f) = \mathop {\inf }\limits_{p \in \pi _n } \mathop {\sup }\limits_{x \geqq 0} |1/f(x) - 1/p(x)|\) . П. Эрдеш и А. Редди высказали пр едположение, что еслиf(z) имеет порядок ?ε(0, ∞) и $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (f)< 1, TO \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (f) > 0$$ В данной статье показ ано, что для целой функ ции $$E_\omega (z) = \mathop \sum \limits_{n = 0}^\infty \frac{{z^n }}{{\Gamma (1 + n\omega (n))}}$$ , где выполняется $$\lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{{\omega (n)}}{{e + 1}}} \right\}$$ , т.е. $$\mathop {\lim sup}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) \leqq \exp \left\{ { - \frac{1}{{\rho (e + 1)}}} \right\}< 1, a \mathop {\lim inf}\limits_{n \to \infty } \lambda _n^{1/n} (E_\omega ) = 0$$ . ФункцияE ω (z) имеет порядок ?.  相似文献   

20.
В НАстОьЩЕЕ ВРЕМь ИжВ ЕстНО МНОгО УтВЕРжДЕ НИИ тИпА тЕОРЕМ ВлОжЕНИь, кОтО РыЕ ФОР-МУлИРУУтсь В тЕРМИНАх МОДУлЕИ НЕ пРЕРыВНОстИ. ДАННАь РАБОтА сОДЕРж Ит НЕскОлькО тЕОРЕМ В лОжЕНИь с УслОВИьМИ, ВыРАжЕННы МИ В тЕРМИНАх НАИлУЧшИх п РИБлИжЕНИИE n(?,p) ФУНкц ИИ ? тРИгОНОМЕтРИЧЕскИМ И пОлИНОМАМИ пОРьДкАn В МЕтРИкЕL p: И сслЕДУЕтсь ВлОжЕНИЕ клАссАE(α,p) ФУНкцИИ ИжL p, УДОВлЕтВОРьУ-ЩИх Дль жАДАННОИ МОНОтОН НО УБыВАУЩЕИ к НУлУ пОслЕДОВАтЕльНОстИ α={Аn} УслОВИУ $$E_n (f,p) \leqq M\alpha _n (M = M(f))< \infty ;n = 1,2,...).$$ хАРАктЕРНыМИ РЕжУль тАтАМИ РАБОты ьВльУт сь слЕДУУЩИЕ ДВА слЕДстВИь тЕОРЕМ ы 3. слЕДстВИЕ 1. пУстьР≧1И Β>?1.ЕслИ пОслЕДОВАтЕльНОстьn} УДОВлЕтВОРьЕт УслОВИУ: , тО Дль ВлОжЕНИь $$E(\alpha ,p) \subset L^p (\ln + L)^{\beta + 1} $$ НЕОБхОДИМО И ДОстАтОЧНО $$\mathop \sum \limits_{n = 2}^\infty \frac{{(\ln n)\beta }}{n}\alpha _n^p< \infty .$$ слЕДстВИЕ 2.ЕслИ v>p≧1,Β≧0 И {Аn} УДОВлЕтВОРьЕт УслОВИУ (1),тО Дль ВлОжЕ НИь $$E(\alpha ,p) \subset L^\nu (\ln + L)^\beta $$ НЕОБхОДИМО И ДОстАтО ЧНО $$\mathop \sum \limits_{n = 2}^\infty n^{\nu /p - 2} (\ln + n)^\beta \alpha _n^\nu< \infty ,$$   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号