首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The decomposition of azodicarbonamide (Genitron AC-2) in the solid state was investigated by DSC. It was found that the decomposition under non-isothermal conditions can be described by the autocatalytic reaction scheme $$X\xrightarrow{{k_1 }}Y,X + Y\xrightarrow{{k'_2 }}2Y$$ where the following dependences hold for the rate constants: $$k_1 = 4.8 \times 10^{19} e - {{243 600} \mathord{\left/ {\vphantom {{243 600} {RT_s - 1}}} \right. \kern-\nulldelimiterspace} {RT_s - 1}}$$ and $$k'_2 = 1.0 \times 10^{13} e - {{133 500} \mathord{\left/ {\vphantom {{133 500} {RT_s - 1}}} \right. \kern-\nulldelimiterspace} {RT_s - 1}}$$ The first pre-exponential factor includes the thermal history of the sample, especially the quick heating to a certain temperature, from which normal slow heating starts. Due to this fast heating, the decomposition reaction of AZDA may be understood as the collapse of its crystal lattice into nucleation centres with critical dimensions.  相似文献   

2.
As a new method, stable-isotope dilution activation analysis has been developed. When an element consists of at least two stable isotopes which are converted easily to the radioactive nuclides through nuclear reactions, the total amount of the element (xg) can be determined by irradiating simultaneously the duplicated sample containing small amounts of either enriched isotope (y g), and by using the following equation. $${{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} \mathord{\left/ {\vphantom {{x = y\left( {{M \mathord{\left/ {\vphantom {M {M*}}} \right. \kern-\nulldelimiterspace} {M*}}} \right)\left[ {\left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)\left( {{{\theta _2^* } \mathord{\left/ {\vphantom {{\theta _2^* } {\theta _2 }}} \right. \kern-\nulldelimiterspace} {\theta _2 }}} \right) - \left( {{{\theta _1^* } \mathord{\left/ {\vphantom {{\theta _1^* } {\theta _1 }}} \right. \kern-\nulldelimiterspace} {\theta _1 }}} \right)} \right]} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {1 - \left( {{{R*} \mathord{\left/ {\vphantom {{R*} R}} \right. \kern-\nulldelimiterspace} R}} \right)} \right]}}$$ Where M and M* are atomic weights of the element to be determined and the enriched isotope used as a spike,θ 1 andθ 2 are natural abundances of two stable isotopes in the element,θ 1 * andθ 2 * are isotopic compositions of the above isotopes in the enriched isotope, and R and R* are counting ratios of gamma-rays emitted by two radionuclides produced in the sample and the isotopic mixture. Neither calibration standard nor correction of irradiation conditions are necessary for this method. Usefulness of the present method was verified by photon activations of Ca, Zn and Ce using isotopically enriched48ca,68Zn and142Ce.  相似文献   

3.
The partial molar excessGibbs energies \(\Delta \overline G _{AgCl}^E \) of AgCl in the binary system AgCl?LiCl have been measured over the entire composition range at temperatures between 923.15K and 1175.15K in steps of 50K, using the reversible formation cell $${{Ag\left( s \right)} \mathord{\left/ {\vphantom {{Ag\left( s \right)} {AgCl\left( l \right)}}} \right. \kern-\nulldelimiterspace} {AgCl\left( l \right)}}---LiCl\left( l \right)/C,Cl_2 $$ The measured \(\Delta \overline G _{AgCl}^E \) values were fitted by the use of theRedlich-Kister-Ansatz for thermodynamic excess functions. The evaluatedRedlich-Kister parameters have been used to calculate the molar excessGibbs energies ΔG E and the partial molar excessGibbs energies \(\Delta \overline G _{LiCl}^E \) of LiCl. From the temperature dependence of theRedlich-Kister parameters for ΔG E the partial and integral molar heats of mixing and excess entropies were calculated. For 1073 K and the mole fractionx=0.5 the following values were obtained: $$\Delta G^E = 2130\left[ {J mol^{ - 1} } \right], \Delta H^E = 1994\left[ {J mol^{ - 1} } \right], \Delta S^E = 0.127 \left[ {J mol^{ - 1} K^{ - 1} } \right]$$   相似文献   

4.
Kinetic isotope effects for oxidation reactions of ethylene and cyclohexene in solutions of cationic palladium(ii) complexes in MeCN-H2O(D2O) systems, were measured. It was established that the ratio of the initial reaction rates ${{R_0^{H_2 O} } \mathord{\left/ {\vphantom {{R_0^{H_2 O} } {R_0^{D_2 O} }}} \right. \kern-0em} {R_0^{D_2 O} }} $ is equal to 1 for both reactions with the use of cationic complexes of the type Pd(MeCN) x (H2O)4?x 2+, which differs from oxidation reactions catalyzed by chloride palladium complexes in the same solutions, where the ratio ${{R_0^{H_2 O} } \mathord{\left/ {\vphantom {{R_0^{H_2 O} } {R_0^{D_2 O} }}} \right. \kern-0em} {R_0^{D_2 O} }} $ = 5.0±0.16 and 4.73±0.14 at H+ molar fraction of 0.48 and 0.16, respectively (H+ molar fraction was calculated based on the sum of [H+] and [D+]).  相似文献   

5.
The standard Gibbs energy of formation of Pr2TeO6 $ (\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)) $ was derived from its vapour pressure in the temperature range of 1,400–1,480 K. The vapour pressure of TeO2 (g) was measured by employing a thermogravimetry-based transpiration method. The temperature dependence of the vapour pressure of TeO2 over the mixture Pr2TeO6 (s) + Pr2O3 (s) generated by the incongruent vapourization reaction, Pr2TeO6 (s) = Pr2O3 (s) + TeO2 (g) + ½ O2 (g) could be represented as: $ { \log }\left\{ {{{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} \mathord{\left/ {\vphantom {{p\left( {{\text{TeO}}_{ 2} ,\;{\text{g}}} \right)} {{\text{Pa}} \pm 0.0 4}}} \right. \kern-0em} {{\text{Pa}} \pm 0.0 4}}} \right\} = 19. 12- 27132\; \left({\rm{{{\text{K}}}}/T} \right) $ . The $ \Updelta_{\text{f}} G^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) $ could be represented by the relation $ \left\{ {{{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} \mathord{\left/ {\vphantom {{\Updelta_{\text{f}} G^{^\circ } \left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} ,\;{\text{s}}} \right)} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-0em} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} \pm 5.0} \right\} = - 2 4 1 5. 1+ 0. 5 7 9 3\;\left(T/{\text{K}}\right) .$ Enthalpy increments of Pr2TeO6 were measured by drop calorimetry in the temperature range of 573–1,273 K and heat capacity, entropy and Gibbs energy functions were derived. The $ \Updelta_{\text{f}} H_{{298\;{\text{K}}}}^{^\circ } \;\left( {{ \Pr }_{ 2} {\text{TeO}}_{ 6} } \right) $ was found to be $ {{ - 2, 40 7. 8 \pm 2.0} \mathord{\left/ {\vphantom {{ - 2, 40 7. 8 \pm 2.0} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}}} \right. \kern-0em} {\left( {{\text{kJ}}\,{\text{mol}}^{ - 1} } \right)}} $ .  相似文献   

6.
The enthalpies of dissolution for Hydrazinium Dipicrylamine (HDPA) in N-methyl pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) were measured using a RD496-2000 Calvet microcalorimeter at 298.15 K. Empirical formulae for the calculation of the enthalpies of dissolution (Δdiss H) were obtained from the experimental data of the dissolution processes of HDPA in NMP and DMSO. The linear relationships between the rate (k) and the amount of substance (a) were found. The corresponding kinetic equations describing the two dissolution processes were $ {{\text{d}\alpha } \mathord{\left/ {\vphantom {{\text{d}\alpha} {\text{d}t}}} \right. \kern-0pt} {\text{d}t}} = 10^{ - 2.71}\left( {1 - \alpha } \right)^{1.23} $ d α / d t = 10 ? 2.71 ( 1 ? α ) 1.23 for the dissolution of HDPA in NMP, and $ {{\text{d}\alpha } \mathord{\left/ {\vphantom {{\text{d}\alpha} {\text{d}t}}} \right. \kern-0pt} {\text{d}t}} = 10^{ - 2.58}\left( {1 - \alpha } \right)^{0.81} $ d α / d t = 10 ? 2.58 ( 1 ? α ) 0.81 for the dissolution of HDPA in DMSO, respectively.  相似文献   

7.
The enthalpies of dissolution for di(N,N-di(2,4,6,-trinitrophenyl)amino)-ethylenediamine (DTAED) in dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP) were measured using a RD496-2000 Calvet microcalorimeter at 298.15?K. Empirical formulae for the calculation of the enthalpies of dissolution (??diss H) were obtained from the experimental data of the dissolution processes of DTAED in DMSO and NMP. The linear relationships between the rate (k) and the amount of substance (a) were found. The corresponding kinetic equations describing the two dissolution processes were $ {{{\rm{d}}\alpha } \mathord{\left/ {\vphantom {{{\rm{d}}\alpha } {{\rm{d}}t}}} \right. \kern-0em} {{\rm{d}}t}} = 10^{ - 2.68} \left( {1 - \alpha } \right)^{0.84} $ for the dissolution of DTAED in DMSO, and $ {{{\rm{d}}\alpha } \mathord{\left/ {\vphantom {{{\rm{d}}\alpha } {{\rm{d}}t}}} \right. \kern-0em} {{\rm{d}}t}} = 10^{ - 2.79} \left( {1 - \alpha } \right)^{0.87} $ for the dissolution of DTAED in NMP, respectively.  相似文献   

8.
Values of pa H o for 0.05 mole-kg?1 aqueous solutions of sodium hydrogen diglycolate in the temperature range 5–65°C have been obtained from cells without transport, and can be fitted to the equation $$\begin{gathered} pa^\circ _H = 3.5098 + 2.222 \times 10^{ - 3} ({T \mathord{\left/ {\vphantom {T {K - 298.15}}} \right. \kern-\nulldelimiterspace} {K - 298.15}}) \hfill \\ + 2.628 \times 10^{ - 5} ({T \mathord{\left/ {\vphantom {T {K - 298.15}}} \right. \kern-\nulldelimiterspace} {K - 298.15}})^2 \hfill \\ \end{gathered} $$ The analysis has been carried out by a multilinear regression procedure using a form of the Clarke and Glew equation. This buffer standard may be a useful alternative to the saturated potassium hydrogen tartrate buffer.  相似文献   

9.
Beginning with rather basic principles, general relations are obtained for evaporative rate constants. These are established both as a function of energy and of temperature. In parallel with this, expressions are developed for the kinetic energy distribution of the separating species. Explicit evaluation of the rate constants in the case of “chemical” evaporation from an entity containingn monomeric units yields as a typical result $$k(T)(s^{ - 1} ) = 3 \cdot 10^{13} n^{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \exp [6/n^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ]\exp ( - \Delta E_a (n)/k_B T)$$ Experimental evidence in support of this relation is cited. Applications to thermionic emission are also noted.  相似文献   

10.
Caffeine has been found to display a low-temperatureβ- and a high-temperatureα-modification. By quantitative DTA the following data were determined: transformation temperature 141±2°; enthalpy of transition 4.03±0.1 kJ·mole?1; enthalpy of fusion 21.6±0.5 kJ·mole?1; molar heat capacity $$\begin{array}{*{20}c} {{\vartheta \mathord{\left/ {\vphantom {\vartheta {^\circ C}}} \right. \kern-\nulldelimiterspace} {^\circ C}}} & {100(\beta )} & {100(\alpha )} & {150(\alpha )} & {100(\alpha )} \\ {{{C^\circ _\mathfrak{p} } \mathord{\left/ {\vphantom {{C^\circ _\mathfrak{p} } {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} \right. \kern-\nulldelimiterspace} {J \cdot K^{ - 1} \cdot mole^{ - 1} }}} & {271 \pm 9} & {287 \pm 10} & {309 \pm 11} & {338 \pm 10} \\ \end{array} $$ in good accord with drop-calorimetric data. For the constants of the equation log (p/Pa)=?A/T+B, static vapour pressure measurements on liquid and solidα-caffeine, and effusion measurements on solidβ-caffeine yielded: $$\begin{array}{*{20}c} {A = 3918 \pm 37; 5223 \pm 28; 5781 \pm 35K^{ - 1} } \\ {B = 11.143 \pm 0.072; 13.697 \pm 0.057; 15.031 \pm 0.113} \\ \end{array} $$ . The evaporation coefficient ofβ-caffeine is 0.17±0.03.  相似文献   

11.
Quantitative studies of the rate of Cu2S-formation by thioacetamide (TAA) were made with the help of the polarographic method of continuous registration at constant potential, and the following equation for the reaction rate between Cu+-ions andTAA in ammoniacal solutions was derived: 1 $$ - \frac{{d[Cu^I ]}}{{dt}} = k \cdot \frac{{[Cu^I ] \cdot [CH_3 CSNH_2 ]}}{{[NH_3 H_2 O]^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$2$}}} \cdot [H^ + ]}}\frac{{^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 4}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{$4$}}} }}{{^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {10}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${10}$}}} }} \cdot \frac{{f_{Cu} }}{{f_{H^{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 {10}}}\right.\kern-\nulldelimiterspace}\!\lower0.7ex\hbox{${10}$}}} } }}$$ The value at 25.0° of the rate constantk is (1.6±0.2)·10?2 mole7/20·litre?7/20·sec?1. The validity of equation (1) has been proved over the pH range 8.5–9.5 and the ammonia concentration of 4.0·10?2–4.0·10?1 mole per litre, by only a small excess ofTAA and moderate reaction rates.  相似文献   

12.
Lead salt of 4-amino-3,5-dinitropyrazole (PDNAP) was synthesized from 4-amino-3,5-dinitropyrazole by the process of metathesis reaction, and its structure was characterized by IR, element analysis, TG, and DSC. The thermal decomposition kinetics and mechanism were studied by means of different heating rate differential scanning calorimetry (DSC) and thermolysis in situ rapid-scan FTIR simultaneous. The effects of PDNAP as an energetic combustion catalyst on the combustion performance of the solid propellant were studied. The results show that the peak temperature is 319.2 °C on DSC curve. The kinetic equation of major exothermic decomposition reaction is $ \frac{{\text{d}}\alpha}{{\text{d}}T} = \frac{{10^{15.45} }}{\beta }4(1 - \alpha )[ - \ln \left( {1 - \alpha } \right)]^{{{3 \mathord{\left/ {\vphantom {3 4}} \right. \kern-0pt} 4}}} \exp ({{ - 1.972 \times 10^{5} } \mathord{\left/ {\vphantom {{ - 1.972 \times 10^{5} } {RT}}} \right. \kern-0pt} {RT}}). $ The PDNAP is shown by IR spectroscopy to convert to PbO during the decomposition process. Combustion experiments show PDNAP can reduce the burning rate pressure exponent of the double-base or composite-modified double-base propellant.  相似文献   

13.
The bond dissociation energies for Alkali halides have been estimated based on the derived relations: $$\begin{gathered} D_{AB} = \bar D_{AB} + 31.973{\text{ e}}^{0.363\Delta x} {\text{ and}} \hfill \\ D_{AB} = \bar D_{AB} (1 - 0.2075\Delta xr_e ) + 52.29\Delta x, \hfill \\ \end{gathered} $$ where \(\bar D_{AB} = (D_{AA} \cdot D_{BB} )^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}} \) , Δx represents Pauling electronegativity differences x(A ?xB) and r e is the internuclear distance. A simplified formula relating bond orders, q, to spectroscopic constants is suggested. The formula has the form q = 1.5783 × 10?3 (ω e 2 re/ Be)1/2. The ambiguity arising from the Parr and Borkman relation is discussed. The present study supports the view of Politzer that q/(0.5r e)2 is the correct definition of bond order. The estimated bond energies and bond orders are in reasonably good agreement with the literature values. The bond energies estimated with the relations we suggested, for alkali halides give an error of 4.5% and 5.3%, respectively. The corresponding error associated with Pauling's equation is 40.2%.  相似文献   

14.
The surface potential, ψ in mV, was determined for the following polyelectrolytes and co-polyelectrolytes in aqueous solution: sodium poly(styrene sulfonate); sodium poly(vinyl sulfonate); poly(vinyl alcohol-co-55% sodium vinyl sulfate); poly(methylmethacrylate-co-40% sodium styrene sulfonate); poly (methylmethacrylate-co-60% sodium styrene sulfonate); poly(styrene-co-56% styrene sulfonate); and poly(styrene-co-80% styrene sulfonate). For comparison, the surface potentials of aqueous sodium dodecyl sulfate and sodium dodecylbenzene sulfonate micelles were also determined. The dyes neutral red and safranine-T were used as indicators. ThepKa of the former was calculated from the Henderson-Hasselbach equation, using UV-VIS spectroscopy to determine the concentration of protonated ground state as a function of pH. The surface potential of the aggregates was culculated from the equation: $$pKa_{\text{i}} = pKa_0 - {{F\Psi } \mathord{\left/ {\vphantom {{F\Psi } {2.3RT}}} \right. \kern-\nulldelimiterspace} {2.3RT}}$$ wherepKa i andpKa o refer to the indicatorpKa in the presence of charged and nonionic interfaces, respectively, and the other terms have their usual meaning. The protonation kinetics of the triplet state of safranine-T (measured from the decay of its transient absorption at 830 nm) was used to determine hydronium ion concentrations at aggregate interfaces, and the corresponding surface potentials were calculated from: $$a_{{\text{Hi}}} = a_{{\text{Haq}}} \times \exp \left( {{{ - F\Psi } \mathord{\left/ {\vphantom {{ - F\Psi } {RT}}} \right. \kern-\nulldelimiterspace} {RT}}} \right)$$ wherea Hi anda Haq refer to the hydronium ion activity at the aggregate interface, and in bulk water, respectively. Surface potentials determined by both techniques were in excellent agreement. Values of ψ were found to depend on the structure of the polyelectrolyte, sodium poly(styrene sulfonate) versus sodium poly(vinyl sulfonate) and, for the same type of co-polyelectrolyte, on the percentage of charged monomer.  相似文献   

15.
Using theTorker-technique, the vapour pressures of β-Mn in the temperature range 1230–1370° K have been determined. From these measurements the heat of sublimation of α-Mn at 0° K has been obtained ΔH 0 o=67800±800 cal/g-atom. From measurements of the dissociation pressures of ZrMn2 the enthalpy ΔH 0 o of the reaction. $${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3} Zr (s) + {2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}Mn (g) = Zr_{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} Mn_{{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} (s)$$ has been evaluated. ΔH 0 o=?49150±700 cal/GFW. Combining this value with the heat of sublimation of α-Mn leads to the heat of formation of Zr1/3Mn2/3 ΔH 0 o=?3900±1200 cal/GFW.  相似文献   

16.
In the scope of building a PCILO method for excited states, one builds and tests excitonic zeroth order wave-functions. For \(\left( {_\pi ^{\pi ^ * } } \right)\) transitions, the (σ+π) excitonic and purely (π) excitonic wave functions are compared, showing that theσ-π coupling between \(\left( {_\pi ^{\pi ^ * } } \right)\) and \(\left( {_\sigma ^{\sigma ^ * } } \right)\) single excitations may be considered as a perturbation. The excited state wave-functions are analyzed in terms of neutral and ionic structures, and the fluctuation of the charges in the two-electrons loges are studied, showing that theσ-π coupling favours the neutral structures and diminishes the charge-fluctuations.  相似文献   

17.
The gas-phase thermal decomposition of 2-chloropropene in the presence of a radical inhibitor was studied in the temperature range of 668.2–747.2 K and pressure between 11–76 Torr using the conventional static system. The dehydrochlorination to propyne and HCl was the only reaction channel and accounted for >98% of the reaction. The formation of propyne was found to be homogeneous and unimolecular and follows a first-order rate law. The observed rate coefficient is expressed by the following Arrhenius equation: $$ k_{total} = 10^{13.05 \pm 0.46} (s^{ - 1} )\exp ^{ - 242.6 \pm 6.2({{kJ} \mathord{\left/ {\vphantom {{kJ} {mol}}} \right. \kern-\nulldelimiterspace} {mol}})/RT} . $$ The hydrogen halide elimination is believed to proceed through a semipolar four-membered cyclic transition state. The presence of a methyl group on the α-carbon atom lowered the activation energy by 47 kJ mol?1. The experimentally observed pressure dependence of the rate constant is compared with the theoretically predicted values that are obtained by RRKM calculations.  相似文献   

18.
The luminescence spectra of the polycrystalline compounds [Cr(CH2NH2COO)3 · H2O] and [Cr2(OH)2(CH2NH2COO)4] are investigated in the temperature range of 120K – 4.2K. From the known crystal structure (P21/c =D 2h /5 ) of the mononuclear compound assignment of the zero-phonon bands based on crystal field theory becomes possible. Both of the highly intense phosphorescence transitions are observed at \(P_1 = 14493 cm^{ - 1} ({}^2A'' \xrightarrow{{0.0}} {}^4A) and P_2 = 14428 cm^{ - 1} ({}^2A' \xrightarrow{{0.0}} {}^4A)\) . Assignment of the accompanying vibronic bands is made from the measured infrared data. Crystal field parameters Dq, B and C are determined from the luminescence and reflectance spectra. In the case of the binuclear compound the Cr3+-Cr3+ interaction via hydroxyl brides may be described by an axchange operator \(H_{ex} = - 2 \sum\limits_{ij} {J_{ij} S_i^a \cdot S_j^a } \) and from this the energy level diagram is calculated. Both observed strong phosphorescence bands at 14369 cm?1 and 14184 cm?1 are assigned to \(\left| {{}^2E \cdot {}^4A_2 \rangle _{s = 2} \xrightarrow{{0.0}}} \right| {}^4A_2 \cdot {}^4A_2 \rangle _{s = 2} and \left| {{}^2E \cdot {}^4A_2 \rangle _{s = 1} \xrightarrow{{0.0}}} \right| {}^4A_2 \cdot {}^4A_2 \rangle _{s = 1} \) transitions.  相似文献   

19.
For some thirty hydrocarbons the s character of hybrids obtained by the application of the maximum overlap method have been correlated with C-H and C-C spin-spin coupling constants. The following relationships were obtained: $$J_{{\text{C}}^{{\text{13}}} - {\text{H}}} = 1079a_{{\text{CH}}}^{\text{2}} /(1 + S_{{\text{CH}}}^{\text{2}} ) - 54.9$$ , $$J_{{\text{C}}_{\text{1}}^{{\text{13}}} - {\text{C}}_{\text{2}}^{{\text{13}}} } = 1020.5a_{{\text{C}}_{\text{1}} }^2 a_{{\text{C}}_{\text{2}} }^{\text{2}} /(1 + S_{{\text{CC}}}^{\text{2}} ) - 8.2$$ . Here the coupling constants are expressed in cps units. In the calculation of the maximum overlap hybrids either the experimental bond lengths or a standard bond lengths were used. For the \(J_{{\text{C}}^{{\text{13}}} - {\text{H}}}\) and \(J_{{\text{C}}^{{\text{13}}} - {\text{H}}} \) coupling constants the standard deviations are 0.9 cps and 1.9 cps respectively. It has been suggested that the large additive constant in the \(J_{{\text{C}}^{{\text{13}}} - {\text{H}}}\) correlation may be attributed to the ionic character of C-H bonds. A good agreement with the experimental data strongly supports the idea that the Fermi contact term and the hybridization are dominant factors in determining carbon-hydrogen and carbon-carbon spin-spin coupling constants across one bond, at least in hydrocarbons.  相似文献   

20.
The solvent extraction of Yb(III) and Ho(III) by 1-(2-pyridylazo)-2-naphthol (PAN or HL) in carbon tetrachloride from aqueous-methanol phase has been studied as a function ofpH × and the concentration ofPAN or methanol (MeOH) in the organic phase. When the aqueous phase contains above ~25%v/v of methanol the synergistic effect was increased. The equation for the extraction reaction has been suggested as: $$\begin{gathered} Ln(H_2 0)_{m(p)}^{3 + } + 3 HL_{(o)} + t MeOH_{(o)} \mathop \rightleftharpoons \limits^{K_{ex} } \hfill \\ LnL_3 (MeOH)_{t(o)} + 3 H_{(p)}^ + + m H_2 0 \hfill \\ \end{gathered} $$ where:Ln 3+=Yb, Ho; $$\begin{gathered} t = 3 for C_{MeOH in.} \varepsilon \left( { \sim 25 - 50} \right)\% {\upsilon \mathord{\left/ {\vphantom {\upsilon \upsilon }} \right. \kern-\nulldelimiterspace} \upsilon }; \hfill \\ t = 0 for C_{MeOH in.} \varepsilon \left( { \sim 5 - 25} \right)\% {\upsilon \mathord{\left/ {\vphantom {\upsilon \upsilon }} \right. \kern-\nulldelimiterspace} \upsilon } \hfill \\ \end{gathered} $$ . The extraction equilibrium constants (K ex ) and the two-phase stability constants (β 3 × ) for theLnL 3(MeOH)3 complexes have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号