首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider classes of stochastic linear programming problems which can be efficiently solved by deterministic algorithms. For two–stage recourse problems we identify two such classes. The first one consists of problems where the number of stochastically independent random variables is relatively low; the second class is the class of simple recourse problems. The proposed deterministic algorithm is successive discrete approximation. We also illustrate the impact of required accuracy on the efficiency of this algorithm. For jointly chance constrained problems with a random right–hand–side and multivariate normal distribution we demonstrate the increase in efficiency when lower accuracy is required, for a central cutting plane method. We support our argumentation and findings with computational results.  相似文献   

2.
In this paper, some Newton and quasi-Newton algorithms for the solution of inequality constrained minimization problems are considered. All the algorithms described produce sequences {x k } convergingq-superlinearly to the solution. Furthermore, under mild assumptions, aq-quadratic convergence rate inx is also attained. Other features of these algorithms are that only the solution of linear systems of equations is required at each iteration and that the strict complementarity assumption is never invoked. First, the superlinear or quadratic convergence rate of a Newton-like algorithm is proved. Then, a simpler version of this algorithm is studied, and it is shown that it is superlinearly convergent. Finally, quasi-Newton versions of the previous algorithms are considered and, provided the sequence defined by the algorithms converges, a characterization of superlinear convergence extending the result of Boggs, Tolle, and Wang is given.This research was supported by the National Research Program Metodi di Ottimizzazione per la Decisioni, MURST, Roma, Italy.  相似文献   

3.
Discrete solution to nonlinear systems problems that leads to a series of linear problems associated with non-invariant large-scale sparse symmetric positive matrices is herein considered. Each linear problem is solved iteratively by a conjugate gradient method. We introduce in this paper new solvers (IRKS, GIRKS and D-GIRKS) that rely on an iterative reuse of Krylov subspaces associated with previously solved linear problems. Numerical assessments are provided on large-scale engineering applications. Considerations related to parallel supercomputing are also addressed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
A comparison of several invariant imbedding algorithms for the numerical solution of two-point boundary-value problems is presented. These include the Scott algorithm, the Kagiwada-Kalaba algorithm, the addition formulas, and the sweep method. Advantages and disadvantages of each algorithm are discussed, and numerical examples are presented.  相似文献   

5.
Results of a computer experiment for a local algorithm in combination with algorithms of the Dispro under the solution of quasiblock problems of discrete programming are considered. The use of the relaxation scheme in the local algorithm is given.Translated from Dinamicheskie Sistemy, No. 9, pp. 117–122, 1990.  相似文献   

6.
In this paper we consider the problem of locating one new facility with respect to a given set of existing facilities in the plane and in the presence of convex polyhedral barriers. It is assumed that a barrier is a region where neither facility location nor travelling are permitted. The resulting non-convex optimization problem can be reduced to a finite series of convex subproblems, which can be solved by the Weiszfeld algorithm in case of the Weber objective function and Euclidean distances. A solution method is presented that, by iteratively executing a genetic algorithm for the selection of subproblems, quickly finds a solution of the global problem. Visibility arguments are used to reduce the number of subproblems that need to be considered, and numerical examples are presented.  相似文献   

7.
《Journal of Complexity》2006,22(5):676-690
We establish essentially optimal bounds on the complexity of initial-value problems in the randomized and quantum settings. For this purpose we define a sequence of new algorithms whose error/cost properties improve from step to step. These algorithms yield new upper complexity bounds, which differ from known lower bounds by only an arbitrarily small positive parameter in the exponent, and a logarithmic factor. In both the randomized and quantum settings, initial-value problems turn out to be essentially as difficult as scalar integration.  相似文献   

8.
Many space mission planning problems may be formulated as hybrid optimal control problems, i.e. problems that include both continuous-valued variables and categorical (binary) variables. There may be thousands to millions of possible solutions; a current practice is to pre-prune the categorical state space to limit the number of possible missions to a number that may be evaluated via total enumeration. Of course this risks pruning away the optimal solution. The method developed here avoids the need for pre-pruning by incorporating a new solution approach using nested genetic algorithms; an outer-loop genetic algorithm that optimizes the categorical variable sequence and an inner-loop genetic algorithm that can use either a shape-based approximation or a Lambert problem solver to quickly locate near-optimal solutions and return the cost to the outer-loop genetic algorithm. This solution technique is tested on three asteroid tour missions of increasing complexity and is shown to yield near-optimal, and possibly optimal, missions in many fewer evaluations than total enumeration would require.  相似文献   

9.
Rounding algorithms for covering problems   总被引:1,自引:0,他引:1  
In the last 25 years approximation algorithms for discrete optimization problems have been in the center of research in the fields of mathematical programming and computer science. Recent results from computer science have identified barriers to the degree of approximability of discrete optimization problems unless P = NP. As a result, as far as negative results are concerned a unifying picture is emerging. On the other hand, as far as particular approximation algorithms for different problems are concerned, the picture is not very clear. Different algorithms work for different problems and the insights gained from a successful analysis of a particular problem rarely transfer to another.Our goal in this paper is to present a framework for the approximation of a class of integer programming problems (covering problems) through generic heuristics all based on rounding (deterministic using primal and dual information or randomized but with nonlinear rounding functions) of the optimal solution of a linear programming (LP) relaxation. We apply these generic heuristics to obtain in a systematic way many known as well as new results for the set covering, facility location, general covering, network design and cut covering problems. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.Research partially supported by a Presidential Young Investigator Award DDM-9158118 with matching funds from Draper Laboratory.Research partially supported by a Deans Summer Fellowship of the College of Business of the Ohio State University.  相似文献   

10.
Summary In this paper new multilevel algorithms are proposed for the numerical solution of first kind operator equations. Convergence estimates are established for multilevel algorithms applied to Tikhonov type regularization methods. Our theory relates the convergence rate of these algorithms to the minimal eigenvalue of the discrete version of the operator and the regularization parameter. The algorithms and analysis are presented in an abstract setting that can be applied to first kind integral equations.Dedicated to Jim Bramble on the occasion of his sixtieth birthday  相似文献   

11.
For the numerical integration of differential equations with oscillatory solutions adapted Runge-Kutta algorithms of up to 4 stages are presented. The coefficients of these methods are chosen such that certain particular oscillatory solutions are computed without truncation errors.
Zusammenfassung Für die numerische Integration von Differentialgleichungen mit rasch oszillierenden Lösungen werden angepasste Runge-Kutta-Algorithmen mit bis zu 4 Stufen konstruiert. Die Koeffizienten dieser Verfahren werden so gewählt, dass gewisse spezielle oszillierende Lösungen ohne Abbrechfehler berechnet werden.


This paper is dedicated to the memory of Prof. Dr. E. Stiefel.  相似文献   

12.
In this paper, we suggest and analyze a class of iterative methods for solving hemiequilibrium problems using the auxiliary principle technique. We prove that the convergence of these new methods either requires partially relaxed strongly monotonicity or pseudomonotonicity, which is a weaker condition than monotonicity. Results obtained in this paper include several new and known results as special cases.  相似文献   

13.
Interior-point methods are among the most efficient approaches for solving large-scale nonlinear programming problems. At the core of these methods, highly ill-conditioned symmetric saddle-point problems have to be solved. We present combinatorial methods to preprocess these matrices in order to establish more favorable numerical properties for the subsequent factorization. Our approach is based on symmetric weighted matchings and is used in a sparse direct LDL T factorization method where the pivoting is restricted to static supernode data structures. In addition, we will dynamically expand the supernode data structure in cases where additional fill-in helps to select better numerical pivot elements. This technique can be seen as an alternative to the more traditional threshold pivoting techniques. We demonstrate the competitiveness of this approach within an interior-point method on a large set of test problems from the CUTE and COPS sets, as well as large optimal control problems based on partial differential equations. The largest nonlinear optimization problem solved has more than 12 million variables and 6 million constraints.  相似文献   

14.
This paper deals with iterative gradient and subgradient methods with random feasibility steps for solving constrained convex minimization problems, where the constraint set is specified as the intersection of possibly infinitely many constraint sets. Each constraint set is assumed to be given as a level set of a convex but not necessarily differentiable function. The proposed algorithms are applicable to the situation where the whole constraint set of the problem is not known in advance, but it is rather learned in time through observations. Also, the algorithms are of interest for constrained optimization problems where the constraints are known but the number of constraints is either large or not finite. We analyze the proposed algorithm for the case when the objective function is differentiable with Lipschitz gradients and the case when the objective function is not necessarily differentiable. The behavior of the algorithm is investigated both for diminishing and non-diminishing stepsize values. The almost sure convergence to an optimal solution is established for diminishing stepsize. For non-diminishing stepsize, the error bounds are established for the expected distances of the weighted averages of the iterates from the constraint set, as well as for the expected sub-optimality of the function values along the weighted averages.  相似文献   

15.
Several versions of the graph approximation problem are under study. Approximation algorithms for these problems are proposed, and performance guarantees of the algorithms are obtained. In particular, it is shown that the problem of approximation by graphs with a bounded number of connected components belongs to the class APX.  相似文献   

16.
The NP complete problem of the orthogonal packing of objects of arbitrary dimension is considered in the general form. A new model for representing objects in containers is proposed that ensures the fast design of an orthogonal packing. New heuristics for the placement of orthogonal packing are proposed. A single-pass heuristic algorithm and a multimethod genetic algorithm are developed that optimize an orthogonal packing solution by increasing the packing density. Numerical experiments for two- and three-dimensional orthogonal packing problems are performed.  相似文献   

17.
18.
In this paper, we consider a class of nonlinear minimum-maximum optimization problems subject to boundedness constraints on the decision vectors. Three algorithms are developed for finding the min-max point using the concept of solving an associated dynamical system. In the first and third algorithms, solutions are obtained by solving systems of differential equations. The second algorithm is a discrete version of the first algorithm. The trajectories generated by the first and second algorithms may move inside or on the boundary of the constraint set, while the third algorithm ensures that any trajectory that begins inside the constraint region remains in its interior. Sufficient conditions for global convergence of the two algorithms are also established. For illustration, four numerical examples are solved.This work was partially supported by a research grant from the Australian Research Committee.  相似文献   

19.
N. Alon  Y. Azar 《Combinatorica》1991,11(2):97-122
Suppose we haven elements from a totally ordered domain, and we are allowed to performp parallel comparisons in each time unit (=round). In this paper we determine, up to a constant factor, the time complexity of several approximation problems in the common parallel comparison tree model of Valiant, for all admissible values ofn, p and , where is an accuracy parameter determining the quality of the required approximation. The problems considered include the approximate maximum problem, approximate sorting and approximate merging. Our results imply as special cases, all the known results about the time complexity for parallel sorting, parallel merging and parallel selection of the maximum (in the comparison model), up to a constant factor. We mention one very special but representative result concerning the approximate maximum problem; suppose we wish to find, among the givenn elements, one which belongs to the biggestn/2, where in each round we are allowed to askn binary comparisons. We show that log* n+O(1) rounds are both necessary and sufficient in the best algorithm for this problem.Research supported in part by Allon Fellowship, by a Bat Sheva de Rothschild grant and by the Fund for Basic Research administered by the Israel Academy of Sciences.  相似文献   

20.
Approximation algorithms for Hamming clustering problems   总被引:1,自引:0,他引:1  
We study Hamming versions of two classical clustering problems. The Hamming radius p-clustering problem (HRC) for a set S of k binary strings, each of length n, is to find p binary strings of length n that minimize the maximum Hamming distance between a string in S and the closest of the p strings; this minimum value is termed the p-radius of S and is denoted by . The related Hamming diameter p-clustering problem (HDC) is to split S into p groups so that the maximum of the Hamming group diameters is minimized; this latter value is called the p-diameter of S.We provide an integer programming formulation of HRC which yields exact solutions in polynomial time whenever k is constant. We also observe that HDC admits straightforward polynomial-time solutions when k=O(logn) and p=O(1), or when p=2. Next, by reduction from the corresponding geometric p-clustering problems in the plane under the L1 metric, we show that neither HRC nor HDC can be approximated within any constant factor smaller than two unless P=NP. We also prove that for any >0 it is NP-hard to split S into at most pk1/7− clusters whose Hamming diameter does not exceed the p-diameter, and that solving HDC exactly is an NP-complete problem already for p=3. Furthermore, we note that by adapting Gonzalez' farthest-point clustering algorithm [T. Gonzalez, Theoret. Comput. Sci. 38 (1985) 293–306], HRC and HDC can be approximated within a factor of two in time O(pkn). Next, we describe a 2O(p/)kO(p/)n2-time (1+)-approximation algorithm for HRC. In particular, it runs in polynomial time when p=O(1) and =O(log(k+n)). Finally, we show how to find in

time a set L of O(plogk) strings of length n such that for each string in S there is at least one string in L within distance (1+), for any constant 0<<1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号