共查询到20条相似文献,搜索用时 12 毫秒
1.
We have performed density functional theory (DFT) calculations in order to study the gas‐phase interaction of oxo‐ and thio‐oxazolidine derivatives with Zn2+. The calculations were performed at B3LYP/6‐311+(2df,2p) level of theory. It has been found, in all cases, that the direct association of Zn2+ with the carbonyl and thiocarbonyl groups takes place at the heteroatom attached to position 2 irrespective of its nature. This preference has been attributed to the resonance effects caused by the nearest heteroatoms (oxygen and nitrogen). The most stable complexes correspond to structures with Zn2+ bridging between the heteroatom at position 2 or 4 of the 4‐ or 2‐enol (or the 4‐ or 2‐enethiol) tautomer and the dehydrogenated ring nitrogen atom, N3. Zn2+ association has a clear catalytic effect on the tautomerization processes which connect the oxo–thione forms with the enol–enethiol tautomers. Hence, although the enol–enethiol tautomers of oxazolidine and its thio derivatives should not be observed in the gas phase, the corresponding Zn2+ complexes are the most stable species and should be accessible, because the tautomerization barriers are smaller than the Zn2+ binding energies. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
WO3 bulk and various surfaces are studied by an ab-initio density functional theory technique. The band structures and electronic density states of WO3 bulk are investigated. The surface energies of different WO3 surfaces are compared and then the (002) surface with minimum energy is computed for its NH3 sensing mechanism which explains the results in the experiments. Three adsorption sites are considered. According to the comparisons of the energy and the charge change between before and after adsorption in the optimal adsorption site Olc, the NH3 sensing mechanism is obtained. 相似文献
3.
Yicen Liu 《Molecular physics》2016,114(16-17):2373-2381
4.
CN bond orientation in metal carbonitride endofullerenes:A density functional theory study 下载免费PDF全文
The geometric and electronic structures of scandium carbonitride endofullerene Sc_3CN@C_(2n)(2 n = 68, 78, 80, 82,and 84) and Sc(Y)NC@C_(76) have been systematically investigated to identify the preferred position of internal C and N atoms by density functional theory(DFT) calculations combined with statistical mechanics treatments. The CN bond orientation can generally be inferred from the molecule stability and electronic configuration. It is found that Sc_3CN@C_(2n) molecules have the most stable structure with C atom locating at the center of Sc3 CN cluster. The CN bond has trivalent form of [CN]~(3-)and connects with adjacent three Sc atoms tightly. However, in Sc(Y)NC@C_(76) with [NC]~-, the N atom always resides in the center of the whole molecule. In addition, the stability of Sc_3CN@C_(2n)has been further compared in terms of the organization of the corresponding molecular energy level. The structural differences between Sc_3CN@C_(2n) and Sc_3NC@C_(2n)are highlighted by their respected infrared spectra. 相似文献
5.
Investigations of phase transition, elastic and thermodynamic properties of GaP by using the density functional theory 下载免费PDF全文
The phase transition of gallium phosphide (GaP) from zinc-blende (ZB) to a rocksalt (RS) structure is investigated by the plane-wave pseudopotential density functional theory (DFT). Lattice constant a0, elastic constants cij, bulk modulus B0 and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. From the usual condition of equal enthalpies, the phase transition from the ZB to the RS structure occurs at 21.9 GPa, which is close to the experimental value of 22.0 GPa. The elastic properties of GaP with the ZB structure in a pressure range from 0 GPa to 21.9 GPa and those of the RS structure in a pressure range of pressures from 21.9 GPa to 40 GPa are obtained. According to the quasi-harmonic Debye model, in which the phononic effects are considered, the normalized volume V/V0, the Debye temperature θ, the heat capacity Cv and the thermal expansion coefficient α are also discussed in a pressure range from 0 GPa to 40 GPa and a temperature range from 0 K to 1500 K. 相似文献
6.
Designing and introducing novel wheel-shaped supramolecular as host complexes with new magnetic properties is the theme of the day. So in this study, new eight binuclear chromium (III) complexes, as models of real chromium-wheel host complexes, were designed based on changing of bridged-ligands and exchange coupling constants (J) of them were calculated using the broken symmetry density functional theory approach. Substitution of fluorine ligand in fluoro-bridged model [Cr2F(tBuCO2)2(H2O)2(OH)4]?1 by halogen anions (Cl?, Br? and I? ) decreased the antiferromagnetic exchange coupling between Cr(III) centres such that by going from F? to I? the J values became more positive. In the case of hydroxo-bridged model [Cr2OH(tBuCO2)2(H2O)2(OH)4]?1, replacement of hydroxyl by methoxy anion (OMe?) strengthened the antiferromagnetic property of the complex but substitution by sulfanide (SH?) and amide (NH2?) anions weakened it and changed the nature of complexes to ferromagnetic. Because of their different magnetic properties, these new investigated complexes can be suggested as interesting synthetic targets. Also, the J value changes due to ligand substitution were evaluated and it was found that the Cr–X bond strength and partial charges of involved atoms were the most effective factors on it. 相似文献
7.
Ferromagnetism in GaN:Gd: a density functional theory study 总被引:1,自引:0,他引:1
First-principle calculations of the electronic structure and magnetic interaction of GaN:Gd have been performed within the generalized gradient approximation (GGA) of the density functional theory with the on-site Coulomb energy U taken into account (also referred to as GGA+U). The ferromagnetic p-d coupling is found to be over 2 orders of magnitude larger than the s-d exchange coupling. The experimental colossal magnetic moments and room-temperature ferromagnetism in GaN:Gd reported recently are explained by the interaction of Gd 4f spins via p-d coupling involving holes introduced by intrinsic defects such as Ga vacancies. 相似文献
8.
Ningning Zhang Yujuan Zhang Yu Yang Ping Zhang Ziyu Hu Changchun Ge 《The European Physical Journal B - Condensed Matter and Complex Systems》2017,90(5):101
The interaction between helium (He) atom and vacancy defect in tungsten (W) has been investigated by using first-principles simulations. We have obtained that the most stable site for He in tungsten is the substitutional position because He can keep its own electronic structure at this position. In the studied tungsten system, vacancy can act as a trapping center for surrounding He atom with negative trapping energy. The migration behaviors of He atom at tetrahedral interstitial site in W, which can be trapped by vacancy but the final position is almost unchanged comparing with its initial position through structural relaxation, have been predicted and discussed. It is also found that single He atom prefers to go through an octahedral site rather than through a direct path to the vacancy, and the stronger the interaction between He atom and vacancy is, the lower the migration barrier will be. 相似文献
9.
Stretching (kr) and bending (kθ) bond force constants appropriate to describe the bond stiffness of graphene and benzene are calculated using density functional theory. The effect of employing different exchange-correlation functionals for the calculation of kr and kθ is discussed using the generalised gradient approximation (GGA) and the local density approximation (LDA). For benzene, kr = 7.93 mdyn Å-1 and kθ = 0.859 mdyn Å rad-2 using LDA, while kr = 7.67 mdyn Å-1 and kθ = 0.875 mdyn Å rad-2 using GGA. For graphene, kr = 7.40 mdyn Å-1 and kθ = 0.769 mdyn Å rad-2 using LDA, while kr = 6.88 mdyn Å-1 and kθ = 0.776 mdyn Å rad-2 using GGA. This means the difference between the bond force constants for benzene and graphene can be as large as ~12%. The comparison between these two systems allows for elucidation of the effect of periodicity and substitution of carbon atoms by hydrogen in the stiffness of C–C bonds. This effect can be explained by a different redistribution of the charge density when the systems are subjected to strain. The parameters kr and kθ computed here can serve as an input to molecular mechanics or finite element codes of larger carbon molecules, which in the past had frequently assumed the same bond force constants for graphene, benzene or carbon nanotubes. 相似文献
10.
利用过渡金属掺杂的硅基团簇, 构建了一种自旋分子结; 并利用第一性原理方法, 对其电子自旋极化输运性质进行了研究. 计算表明, 通过过渡金属掺杂可以有效地产生自旋极化电流, 磁性金属Fe和非磁性金属Cr和Mn掺杂的体系呈现出较明显的自旋极化透射现象, 但分子结的自旋极化输运能力与团簇孤立状态下的磁矩无一致性.从Sc到Ni的掺杂, 体系的自旋极化透射能力先增大后迅速减小, 在Fe掺杂的Si12团簇中出现最大值.
关键词:
硅团簇
自旋极化输运
密度泛函理论
非平衡格林函数 相似文献
11.
12.
A first-principles density functional approach is used to study the electronic and the elastic properties of Nb15X(X = Ti, Zr, Hf, V, Ta, Cr, Mo, and W) alloys. The elastic constants c11 and c12, the shear modulus C', and the elastic modulus E〈100〉 are found to exhibit similar tendencies, each as a function of valence electron number per atom (EPA), while c44 seems unclear. Both c11 and c12 of Nb15X alloys increase monotonically with the increase of EPA. The C' and E〈100〉 also show similar tendencies. The elastic constants (except c44) increase slightly when alloying with neighbours of a higher d-transition series. Our results are supported by the bonding density distribution. When solute atoms change from Ti(Zr, Hf) to V(Ta) then to Cr(Mo, W), the bonding electron density between the central solute atom and its first neighbouring Nb atoms is increased and becomes more anisotropic, which indicates the strong interaction and thus enhances the elastic properties of Nb-Cr(Mo, W) alloys. Under uniaxial 〈100〉 tensile loading, alloyed elements with less (more) valence electrons decrease (increase) the ideal tensile strength. 相似文献
13.
采用密度泛函理论方法研究了三种imogolite类(未取代、NH2取代和F取代)纳米管的直径单分散性及表面电荷的分布情况, 并从键长方面定性地解释了直径单分散性的原因. 我们给出了IMO, IMO_NH2和IMO_F的应变能曲线, 结果表明三种纳米管结构的最稳定管径值按照IMO < IMO_NH2 < IMO_F的顺序递增, 而imogolite类纳米管直径单分散性是由于管径的增大导致内部Si–O, Al–O键与外部Al-OH键键长变化趋势相反造成的, 总之是内部Si–O, Al–O 键和外部Al–OH键相互作用的结果. 此外, 对三种稳定的纳米管结构做了Mulliken布局分析, 并总结了纳米管直径变化对表面电荷的影响. 结果表明正电荷主要积聚在外表面, 而内表面则感应出负电荷, 同时随着纳米管直径的增大表面电荷逐渐增加, 揭示了表面电荷与管径大小的关系. 研究表明, 可以通过改变imogolite内表面不同的官能化取代来控制纳米管直径, 进而调节表面电荷的分布情况, 这在imogolite类材料的分子设计及应用方面有着重要意义. 相似文献
14.
The solute-solvent interactions of hydrogen-bonded phenol-(H2O)n (n=3-5) clusters in electronic excited states were investigated by means of the time-dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in ground state, S1 state, and T1 state of the clusters, were calculated using the density functional theory (DFT) and TDDFT methods. Only the ring form isomer, the most stable one of the cluster, was considered in this study. Four, five and six intermolecular hydrogen bonds were formed in phenol-(H2O)3, phenol-(H2O)4, and phenol-(H2O)5 clusters, respectively. Based on the analysis of IR spectra, it is revealed that the “window region” between unshifted and shifted absorption bands in both S1 and T1 state becomes broader compared with that in ground state for the corresponding clusters. Furthermore, two interesting phenomenon were observed: (1) with the anticlockwise order of the ring formed by the intermolecular hydrogen bonds in the H-bonded phenol-(H2O)n (n=3-5) clusters, the strengths of the intermolecular hydrogen bonds decrease in all the S0, S1 and T1 states; (2) upon electronic excitation, the smaller the distance between phenol and water is, the larger the change of intermolecular hydrogen bonds strength is. Moreover, the intermolecular hydrogen bond (phenolic OH is the H donor) is strengthened in excited state compared with that in ground state. But the intermolecular hydrogen bond (phenolic OH is the H acceptor) is weakened in excited state. 相似文献
15.
Ming‐Xing Song Zhao‐Min Hao Zhi‐Jian Wu Shu‐Yan Song Liang Zhou Rui‐Ping Deng Hong‐Jie Zhang 《Journal of Physical Organic Chemistry》2013,26(10):840-848
A series of heteroleptic cyclometalated Ir(III) complexes for organic light‐emitting diodes (OLEDs) application have been investigated theoretically to explore their electronic structures and spectroscopic properties. The geometries, the electronic structures, the lowest‐lying singlet absorptions and triplet emissions of Ir(dfppy)2(tpip), Ir(tfmppy)2(tpip), and theoretically designed models of Ir(ppy)2(tpip) were investigated with the density functional theory (DFT)‐based approaches, where ppy = 2‐phenylpyridine, dfppy = 4,6‐difluorophenylpyridine, tfmppy = 4‐trifluoromethylphenylpyridine, and tpip = tetraphenylimidodiphosphinate. Their structures in the ground and their excited states have been optimized at the DFT/Becke 3‐parameter Lee Yang Parr (B3LYP)/Los Alamos National Laboratory 2‐double‐z (LANL2DZ) and time‐dependent DFT/B3LYP/LANL2DZ levels, and the lowest absorptions and emissions were evaluated at B3LYP and M062X level of theory, respectively. Furthermore, the energy transfer mechanism together with the advantage of low efficiency roll‐off for these complexes also can be analyzed here. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
16.
Enhanced photoconductivity of layered Mn(IV)O2 containing protonated Mn(IV) vacancy defects has been recently demonstrated, suggesting new technological possibilities for photoelectric conversion based on visible light harvesting. Using spin-polarized density functional theory, we provide the first direct evidence that such defects can indeed facilitate photoconductivity by (i) reducing the band-gap energy and (ii) separating electron and hole states. Our results thus support the proposition that nanosheet MnO2 offers an attractive new material for a variety of photoconductivity applications. 相似文献
17.
DFT computations have been performed in acetone and water solvents in order to investigate the mechanism of hydrolysis of acid chlorides. Acetyl chloride and chloroacetyl chloride hydrolyze via concerted, one‐step SN2 mechanism, with the attack of water at the sp2 hybridized carbon atom of the C?O group, and the transition state (TS) has distorted tetrahedral geometry. Solvent molecules act as general base and general acid catalysts. The TS of chloroacetyl chloride is tighter and less polar than the TS of acetyl chloride. The structure of the SN2 TS for the hydrolysis of benzoyl chlorides changes with the substituents and the solvent. Tight and loose TSs are formed for substrates bearing electron withdrawing (e‐w) and electron donating (e‐d) groups, respectively. In acetone, only the e‐w effect of the substituents increase the reactivity of the substrates, and the change of the structure of the TSs with the substituents is small. In water, polar and very loose TSs are formed in the reactions of benzoyl chlorides bearing e‐d substituents, and the rate enhancing effect of both e‐d and e‐w groups can be computed at higher level of theory. Calculated reactivities and the changes of the structure of the TSs with substituents and solvent are in accordance with the results of kinetic studies. In SN2 nucleophilic substitutions late/early TSs are formed if the attacking reagent is poorer/better nucleophile than the leaving group, and loose/tight TSs are formed for substrates bearing e‐d/e‐w substituents and in protic/aprotic solvents. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
18.
In this paper, we present a computational study of L-serine using ab initio
molecular dynamics simulation based on density functional theory (DFT)
within the ultrasoft pseudopotentials and generalized-gradient
approximation. Taking into account the intermolecular interactions, we can
indeed simulate the features of the experimental results very well for
L-serine zwitterions in its solid state. The vibrational spectrum of
L-serine performed by DFT was in excellent agreement with our previous
inelastic incoherent neutron scattering spectra measured at 20K for
L-serine in the 10--200meV region on HET spectrometers at ISIS, Rutherford
Appleton Laboratory. 相似文献
19.
Zwanziger JW 《Solid state nuclear magnetic resonance》2005,27(1-2):5-9
Cluster models of boron oxide glasses are studied computationally using density functional theory. It is shown that the isotropic chemical shielding of boron in boroxol rings is about 5 ppm less than for boron in non-ring BO3/2 units, and that the quadrupole coupling in ring sites is about 0.1 MHz larger than in non-ring sites, confirming assignments made in glasses and crystalline model compounds. The chemical shielding anisotropy of these sites is computed and shown to be in agreement with recent experimental measurements. Furthermore, it is shown that the reason for the different responses is not the co-planarity of BO3/2 groups bound in rings, but rather the contraction in the B-O-B bond angle from about 134 degrees in relaxed structures to 120 degrees as found in rings. 相似文献
20.
The effect of ionic size on the diffuse layer characteristics of a spherical double layer is studied using Monte Carlo simulation and density functional theory within the restricted primitive model. The macroion is modelled as an impenetrable charged hard sphere carrying a uniform surface charge density, surrounded by the small ions represented as charged hard spheres and the solvent is taken as a dielectric continuum. The density functional theory uses a partially perturbative scheme, where the hard sphere contribution to the one particle correlation function is evaluated using weighted density approximation and the ionic interactions are calculated using a second-order functional Taylor expansion with respect to a bulk electrolyte. The Monte Carlo simulations have been performed in the canonical ensemble. The detailed comparison is made in terms of zeta potentials for a wide range of physical conditions including different ionic diameters. The zeta potentials show a maximum or a minimum with respect to the polyion surface charge density for a divalent counterion. The ionic distribution profiles show considerable variations with the concentration of the electrolyte, the valency of the ions constituting the electrolyte, and the ionic size. This model study shows clear manipulations of ionic size and charge correlations in dictating the overall structure of the diffuse layer. 相似文献