首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In dynamic nuclear polarisation (DNP), also called hyperpolarisation, a small amount of unpaired electron spins is added to the sample containing the nuclear spins, and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP polarises the electron spin of stable paramagnetic centres by cooling down to low temperature and applying a strong magnetic field. Then weak continuous wave microwave fields are used to induce the polarisation transfer. Complicated cryogenic equipment and strong magnets can be avoided using short-lived photo-excited triplet states that are strongly aligned in the optical excitation process. However, a much faster transfer of the electron spin polarisation is needed and pulsed DNP methods like nuclear orientation via electron spin locking (NOVEL) and the integrated solid effect (ISE) are used.

To describe the polarisation transfer with the strong microwave fields in NOVEL and ISE, the usual perturbation methods cannot be used anymore. In the previous paper, we presented a theoretical approach to calculate the polarisation transfer in ISE. In the present paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 yielding the photo-excited triplet states and compared with experimental results.  相似文献   


2.
A. Henstra 《Molecular physics》2014,112(13):1761-1772
In the hyperpolarisation method known as dynamic nuclear polarisation (DNP), a small amount of unpaired electron spins is added to the sample containing the nuclear spins and the polarisation of these unpaired electron spins is transferred to the nuclear spins by means of a microwave field. Traditional DNP uses weak continuous wave (CW) microwave fields, so perturbation methods can be used to calculate the polarisation transfer. A much faster transfer of the electron spin polarisation is obtained with the integrated solid effect (ISE) which uses strong pulsed microwave fields. As in nuclear orientation via electron spin locking, the polarisation transfer is coherent, similar to the coherence transfer between nuclear spins. This paper presents a theoretical approach to calculate this polarisation transfer.

ISE is successfully used for a fast polarisation transfer from short-lived photo-excited triplet states to the surrounding nuclear spins in molecular crystals. These triplet states are strongly aligned in the photo-excitation process and do not require the low temperatures and strong magnetic fields needed to polarise the electron spins in traditional DNP. In the following paper, the theory is applied to the system naphthalene-h8 doped with pentacene-d14 which provides the photo-excited triplet states, and compared with experimental results.  相似文献   


3.
In this work we demonstrate that low-field chemically induced dynamic nuclear polarization (CIDNP) is strongly affected by re-distribution of polarization, which is formed in the course of spin evolution in transient radical pairs, in diamagnetic reaction products. This phenomenon is of importance when the spins of the reaction product are coupled strongly meaning that spin–spin interactions between them are comparable to the differences in their Zeeman interactions with the external magnetic field. In this case, polarization transfer relies on a coherent mechanism; as a consequence, spins can acquire significant polarization even when they have no hyperfine coupling to the electron spins in the radical pairs, i.e., cannot be polarized directly by CIDNP. This is demonstrated by taking CIDNP of n-butylamine as an example: in this case only the α-CH2 protons are polarized directly, which is confirmed by high-field CIDNP, whereas the β-CH2, γ-CH2 and δ-CH3 protons get polarized only indirectly due to the transfer of polarization from the α-CH2 protons. These results show that low-field CIDNP data should be interpreted with care to discriminate between the effects of spin evolution in transient radical pairs and in diamagnetic reaction products.  相似文献   

4.
5.
Chemically induced dynamic nuclear polarisation (CIDNP) is explored as a source of nuclear hyperpolarisation in heteronuclear Overhauser effect experiments. A photochemical reaction proceeding through a radical pair intermediate is used to enhance (19)F nuclear magnetisation in 3-fluorotyrosine by more than an order of magnitude with a corresponding increase in the amplitudes of (19)F-(1)H cross-relaxation and cross-correlation effects. The reactions employed are cyclic and leave the sample chemically unchanged. The potential for enhancing the sensitivity of heteronuclear NOEs in (19)F-labelled proteins is discussed.  相似文献   

6.
The sensitivity of conventional nuclear magnetic resonance (NMR) techniques is fundamentally limited by the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This review describes the principles and magnetic resonance applications of laser-polarized noble gases. The enormous sensitivity enhancement afforded by optical pumping can be exploited to permit a variety of novel NMR experiments across numerous disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, NMR sensitivity enhancement via polarization transfer, and low-field NMR and MRI.  相似文献   

7.
ABSTRACT

A theoretical approach to Optical Nuclear Polarisation (ONP) is described, which is based on the analysis of Level Anti-Crossings (LACs) in triplet states. Here we consider ONP formed in molecular crystals doped with suitable guest molecules and ONP generated in diamond crystals containing negatively charged nitrogen-vacancy (NV) centres. In both cases, electron spin polarisation of triplet states generated by light excitation is transferred to nuclei giving rise to ONP. Polarisation transfer is most efficient at LACs; for this reason, we consider in detail crossings of electron–nuclear energy levels and the role of different perturbation terms (coming from isotropic and anisotropic hyperfine coupling, zero-field splitting and sample orientation), which turn these crossings into LACs and give rise to ONP. Analytical results are supported by numerical calculations of the ONP field dependences. Thus, the outlined LAC analysis is a useful approach for interpreting the ONP magnetic field dependence.  相似文献   

8.
This perspective article describes the concept of a long-lived nuclear spin state and some of its applications. Classes of molecular environments for which nuclear spin order can be stored for extended periods of time are described, and applications to studies of molecular dynamics and interactions, diffusion NMR and hyperpolarisation are presented. Some of the opportunities and challenges in the field are discussed.  相似文献   

9.
Photoinduced intramolecular electron transfer in linked systems, (R,S)- and (S,S)-naproxen-N-methylpyrrolidine dyads, has been studied by means of spin chemistry methods [magnetic field effect and chemically induced dynamic nuclear polarization (CIDNP)]. The relative yield of the triplet state of the dyads in different magnetic field has been measured, and dependences of the high-field CIDNP of the N-methylpyrrolidine fragment on solvent polarity have been investigated. However, both (S,S)- and (R,S)-enantiomers demonstrate almost identical CIDNP effects for the entire range of polarity. It has been demonstrated that the main peculiarities of photoprocesses in this linked system are connected with the participation of singlet exciplex alongside with photoinduced intramolecular electron transfer in chromophore excited state quenching.  相似文献   

10.
We demonstrate local manipulation and detection of nuclear spin coherence in semiconductor quantum wells by an optical pump-probe technique combined with pulse rf NMR. The Larmor precession of photoexcited electron spins is monitored by time-resolved Kerr rotation (TRKR) as a measure of nuclear magnetic field. Under the irradiation of resonant pulsed rf magnetic fields, Rabi oscillations of nuclear spins are traced by TRKR signals. The intrinsic coherence time evaluated by a spin-echo technique reveals the dependence on the orientation of the magnetic field with respect to the crystalline axis as expected by the nearest neighbor dipole-dipole interaction.  相似文献   

11.
A physical mechanism responsible for the relaxation of nuclear spins coupled by the hyperfine interaction to relaxed electron spins in materials with spin ordering is proposed. The rate of such induced nuclear spin relaxation is proportional to the dynamic shift of the nuclear magnetic resonance (NMR) frequency. Therefore, its maximum effect on the NMR signal should be expected in the case of nuclear spin waves existing in the system. Our estimates demonstrate that the induced relaxation can be much more efficient than that occurring due to the Bloch mechanism. Moreover, there is a qualitative difference between the induced and Bloch relaxations. The dynamics of nuclear spin sublattices under conditions of the induced relaxation is reduced to the rotation of m1 and m2 vectors without any changes in their lengths (m 1 2 (t) = m 2 2 (t) = m 0 2 (t)= const). This means that the excitation of NMR signals by the resonant magnetic field does not change the temperature T n of the nuclear spin system. This is a manifestation of the qualitative difference between the induced and Bloch relaxations. Indeed, for the latter, the increase in T n accompanying the saturation of NMR signals is the dominant effect.  相似文献   

12.
The concept of introducing an additional, stable paramagnetic species into photosynthetic reaction centres to increase the information content of their spin polarized transient EPR spectra is investigated theoretically. The light-induced electron transfer in such systems generates a series of coupled three-spin states consisting of sequential photoinduced radical pairs coupled to the stable spin which acts as an “observer”. The spin polarized transient EPR spectra are investigated using the coupled three-spin system P+IQ A in pre-reduced bacterial reaction centres as a specific example which has been studied experimentally. The evolution of the spin system and the spin polarized EPR spectra of P+IQ A and Q A following recombination of the radical pair (P = primary donor, I = primary acceptor, QA = quinone acceptor) are calculated numerically by solving the equations of motion for the density matrix. The net polarization of the observer spin is also calculated analytically by perturbation theory for the case of a single, short-lived, charge-separated state. The result bears a close resemblance to the chemically induced nuclear polarization (CIDNP) generated in photolysis reactions in which a nuclear spin plays the role of the observer interacting with the radical pair intermediates. However, because the Zeeman frequencies of the three electron spins involved are usually quite similar, the polarization of the electron observer spin in strong magnetic fields can reflect features of the CIDNP effect in both, high and low magnetic fields. The dependence of the quinone spin polarization on the exchange couplings in the three-spin system is investigated by numerical simulations, and it is shown that the observed emissive polarization pattern is compatible with either sign, positive or negative, for a range of exchange couplings, JPI, in the primary pair. The microwave frequency and orientation dependence of the spectra are discussed as two of several possible criteria for determining the sign of JPI.  相似文献   

13.
A theory of chemically induced dynamic nuclear polarization (CIDNP) formed in recombination of successive radical pairs (PRs) is developed. The theory is based on that of RP recombination with the spin Hamiltonian instantaneously changing in time. With kinematics approximation it is shown that general relations for CIDNP are fully expressed via the quadratures of Green functions, which characterize the molecular motion of reagents. Analytical formulae for the time dependence of CIDNP both of primary and secondary RPs have been derived in the strong magnetic field approximation (S-T0 approximation); field dependences of stationary CIDNP effect for some model cases have been analyzed. For long-lived systems the sensitivity of secondary RP CIDNP to the singlet-triplet evolution of primary RP has been demonstrated. It is shown that sometimes the correct analysis of the effect calls for taking into account the reactivity anisotropy.  相似文献   

14.
The effects of stable nitroxide radicals on stimulated nuclear polarization (SNP) and chemically induced dynamic nuclear polarization (CIDNP) in short-lived consecutive biradicals and radical pairs in homogeneous solutions as well as spin-correlated radical pairs in micelles were studied in high and low magnetic fields. It is shown that experimentally observed effects of nitroxide additions on CIDNP and SNP can be well simulated taking into account only the increase in the rates of relaxation in the paramagnetic species constituting radical pairs or biradicals. Effects of coherent spin evolution in three-spin systems under study seem to be of negligible importance.  相似文献   

15.
Coherent polarization transfer among groups of dynamically polarized spins is explored and applied to field cycling experiments where spin evolution proceeds at low magnetic field while observation is performed at high field. The case of two nonequivalent spins-1/2 with scalar spin coupling is considered theoretically in detail for the cases of sudden and adiabatic field change. The criterion for efficient polarization transfer is derived theoretically and consistently confirmed experimentally for three photochemical reactions, involving spin systems of increasing complexity that exhibit chemically induced dynamic nuclear polarization: (1) the two polarized protons of the purine base of adenosine monophosphate; (2) four coupled indole protons of tryptophan; and (3) long-range polarization transfer among the aliphatic protons of cycloundecanone. The importance of polarization transfer in other cases with non-equilibrium population of the nuclear spin levels and the possibility of its utilization in field cycling NMR studies are discussed.  相似文献   

16.
Photochemically induced dynamic nuclear polarization is observed in the two photosynthetic reaction centers of plants, photosystem I (PSI) and photosystem II (PSII) by13C magic-angle spinning nuclear magnetic resonance (NMR) at three different magnetic fields 17.6, 9.4, and 4.7 T. There is a significant difference in field dependence detected in the light-induced signal pattern of the two photosystems. For PSII the optimal NMR enhancement factor of about 5000 is observed at 4.7 T. On the other hand, the maximal light-induced signals of PSI are observed at 9.4 T.  相似文献   

17.
18.
β-NMR     
The β-NMR facility at ISAC is constructed specifically for experiments in condensed matter physics with radioactive ion beams. Using co-linear optical pumping, a 8Li?+? ion beam having a large nuclear spin polarisation and low energy (nominally 30 keV) can be generated. When implanted into materials these ions penetrate to shallow depths comparable to length scales of interest in the physics of surfaces and interfaces between materials. Such low-energy ions can be decelerated with simple electrostatic optics to enable depth-resolved studies of near-surface phenomena over the range of about 2–200 nm. Since the β-NMR signal is extracted from the asymmetry intrinsic to beta-decay and therefore monitors the polarisation of the radioactive probe nuclear magnetic moments, this technique is fundamentally a probe of local magnetism. More generally though, any phenomena which affects the polarisation of the implanted spins by, for example, a change in resonance frequency, line width or relaxation rate can be studied. The β-NMR program at ISAC currently supports a number of experiments in magnetism and superconductivity as well as novel ultra-thin heterostructures exhibiting properties that cannot occur in bulk materials. The general purpose zero/low field and high field spectrometers are configured to perform CW and pulsed RF nuclear magnetic resonance and spin relaxation experiments over a range of temperatures (3–300 K) and magnetic fields (0–9 T).  相似文献   

19.
李爱仙  段素青  张伟 《中国物理 B》2016,25(10):108506-108506
Hyperfine interaction between electron spin and randomly oriented nuclear spins is a key issue of electron coherence for quantum information/computation. We propose an efficient way to establish high polarization of nuclear spins and reduce the intrinsic nuclear spin fluctuations. Here, we polarize the nuclear spins in semiconductor quantum dot(QD) by the coherent population trapping(CPT) and the electric dipole spin resonance(EDSR) induced by optical fields and ac electric fields. By tuning the optical fields, we can obtain a powerful cooling background based on CPT for nuclear spin polarization. The EDSR can enhance the spin flip–flop rate which may increase the cooling efficiency. With the help of CPT and EDSR, an enhancement of 1300 times of the electron coherence time can be obtained after a 10-ns preparation time.  相似文献   

20.
自旋是基本粒子(电子、光子)角动量的内在形式.固体中体现自旋特征的集体电子行为如拓扑绝缘体等是当前凝聚态物理领域关注的焦点,是基态行为.激子作为电子空穴对的激发态且寿命很短,可复合发光,它是否能体现自旋极化主导的行为?对此人们的认识远不如针对基态的电子.激子磁极化子(exciton magnetic polaron,EMP)是由磁性半导体微结构中铁磁自旋耦合态与自由激子相互作用形成的复合元激发,但其研究很有限.本文概述了我们在稀磁半导体微纳米结构中的EMP及其发光动态学光谱、自旋极化激子凝聚态的形成方面取得的一些进展,展望了未来可能在自旋光电子器件、磁控激光、光致磁性等量子技术方面的潜在应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号