首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
类金刚石薄膜在硅基底上的沉积及其热导率   总被引:1,自引:0,他引:1       下载免费PDF全文
艾立强  张相雄  陈民  熊大曦 《物理学报》2016,65(9):96501-096501
采用分子动力学方法模拟了碳在晶体硅基底上的沉积过程, 并分析计算了所沉积的类金刚石薄膜的面向及法向热导率. 对沉积过程的模拟表明, 薄膜密度及sp3杂化类型的碳原子所占比例均随沉积高度的增加而减小, 在碳原子以1 eV能量垂直入射的情况下, 在硅基底上沉积的薄膜密度约为2.8 g/cm3, sp3杂化类型的碳原子所占比例约为22%, 均低于碳在金刚石基底上沉积的情况. 采用Green-Kubo方法, 计算了所沉积类金刚石薄膜的热导率, 其面向热导率可以达到相同尺寸规则金刚石晶体的50%左右, 并且随着薄膜密度与sp3杂化类型碳原子所占比例的升高而升高.  相似文献   

2.
C.K. Lee 《Applied Surface Science》2008,254(13):4111-4117
A diamond film was deposited on silicon substrate using hot filament chemical vapor deposition (HFCVD), and H2 and O2 gases were added to the deposition process for comparison. This work evaluates how adding H2 and O2 affects the corrosion and wear-corrosion resistance characteristics of diamond films deposited on silicon substrate. The type of atomic bonding, structure, and surface morphologies of various diamond films were analyzed by Raman spectrometry, X-ray diffraction (XRD) and atomic force microscopy (AFM). Additionally, the mechanical characteristics of diamond films were studied using a precision nano-indentation test instrument. The corrosion and wear-corrosion resistance of diamond films were studied in 1 M H2SO4 + 1 M NaCl solution by electrochemical polarization. The experimental results show that the diamond film with added H2 had a denser surface and a more obvious diamond phase with sp3 bonding than the as-deposited HFCVD diamond film, effectively increasing the hardness, improving the surface structure and thereby improving corrosion and wear-corrosion resistance properties. However, the diamond film with added O2 had more sp2 and fewer sp3 bonds than the as-deposited HFCVD diamond film, corresponding to reduced corrosion and wear-corrosion resistance.  相似文献   

3.
With the increase of magnetic storage density, the thickness of the protective diamond like carbon (DLC) film on the surfaces of head and disk is required as thin as possible. In this paper, the structure, mechanical properties and corrosion and oxidation resistance of ultra-thin DLC films are investigated. The ultra-thin DLC films were deposited by using filtered cathodic vacuum arc (FCVA) technique. The exact thickness of the ultra-thin DLC film was determined by high resolution transmission electron microscope (HRTEM). Raman analysis indicates that the ultra-thin DLC film presents ta-C structure with high sp3 fraction. In the wear test, a diamond tip was used to simulate a single-asperity contact with the film surface and the wear marks were produced on the film surface. The wear depths decrease with film thickness increasing. If the film thickness was 1.4 nm or above, the wear depth was much lower than that of Si substrate. This indicates that the ultra-thin DLC film with thickness of 1.4 nm shows excellent wear resistance. Corrosion tests in water and oxidation tests in air were carried out to investigate the diffusion barrier effect of the ultra-thin DLC films. The results show that the DLC film with thickness of 1.4 nm provides adequate coverage on the substrate and has good corrosion and oxidation resistance.  相似文献   

4.
超薄类金刚石膜生长和结构特性的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
马天宝  胡元中  王慧 《物理学报》2006,55(6):2922-2927
利用分子动力学模拟方法研究了2—3nm厚的类金刚石(DLC)薄膜在金刚石基体(100)表面上的生长过程. 分析了用来表征沉积后无定型碳膜质量的重要结构特性,如sp3杂化比例、薄膜密度、径向分布函数等,计算结果和现有的实验结果基本一致. 不同入射原子能量对结构特性进而对薄膜性能有重要影响,入射原子能量在20—60eV时,薄膜可以获得最优性能. 载能原子入射是生长均匀、连续、致密固体薄膜的前提,稳定的中间区域对于保证薄膜优良的力学性质是必需的. 关键词: DLC膜 分子动力学模拟 3杂化比例')" href="#">sp3杂化比例  相似文献   

5.
A hybrid PLD system with ion bombardment of films was developed. Growing DLC films were modified during the laser deposition (10 J?cm?2) by argon ions with energy in the range from 40 eV to 210 eV and cathode current of 0.15 A and 0.5 A. The content of sp2 “graphitic” and sp3 “diamond” bonds was measured using XPS. Sp3 bonds changed from 60 % to 81 %. We found the highest sp3 content for energy of 40 eV. Hardness (and reduced Young’s modulus) were determined by nanoindentation and reached 49 GPa (277 GPa). Film adhesion was studied using the scratch test and was up to 14 N for titanium substrates. Relations among deposition conditions and measured properties are presented.  相似文献   

6.
Copper containing diamond like carbon (Cu-DLC) thin films were deposited on various substrates at a base pressure of 1×10?3 Torr using a hybrid system involving DC-sputtering and radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) techniques. The compressive residual stresses of these films were found to be considerably lower, varying between 0.7 and 0.94 GPa and Cu incorporation in these films improve their conductivity significantly. Their structural properties were studied by Raman spectroscopy, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction techniques that clearly revealed the presence of Cu in the DLC structure. Raman analysis yields that Cu incorporation in DLC enhances the graphite-like sp2 bonding. However, the sp2 bonding was found to continuously reduce with the increasing C2H2 gas pressure, this may be due to reduction of Cu nanocrystal at the higher pressure. FTIR results inferred various bonding states of carbon with carbon, hydrogen and oxygen. In addition, hydrogen content and sp3 and sp2 fractions in different Cu-DLC films were also estimated by FTIR spectra and were correlated with stress, electrical, optical and nano-mechanical properties of Cu-DLC films. The effect of indentation load (4–10 mN) on nano-mechanical properties of these films was also explored.  相似文献   

7.
Ultrananocrystalline diamond/hydrogenated amorphous carbon composite films were deposited in the ambient of hydrogen by coaxial arc plasma deposition. The film compositions and chemical bonding structures were investigated by X-ray diffraction, X-ray photoemission and hydrogen forward scattering spectroscopies. The sp3/(sp2+sp3) ratio and hydrogen content in the film were estimated to be 64% and 35?at.%, respectively. The optical parameters and the optical dispersion profile were determined by using a variable angle spectroscopic ellipsometer at 55°, 65° and 75° angle of incidence in the photon energy range of 0.9–5?eV. Combinations of multiple Gaussian, and Tauc-Lorentz or Cody-Lorentz dispersion functions are used to reproduce the experimental data. Results of ellipsometry showed a refractive index of approximately 2.05 (at 2eV) and optical band gap of 1.63?eV. The imaginary part of dielectric function exhibited a peak at 3.8?eV, which has assigned to π-π* electron transitions. Furthermore, Electron spin resonance measurements implied the existence of dangling bonds, which might have a partial contribution to the optical absorption properties of the deposited films. A correlation between optical parameters and structural profile of the deposited films is discussed.  相似文献   

8.
Diamond-like carbon (DLC) is an attractive biomedical material due to its high inertness and excellent mechanical properties. In this study, DLC films were fabricated on Ti6Al4V and Si(1 0 0) substrates at room temperature by pulsed vacuum arc plasma deposition. By changing the argon flow from 0 to 13 sccm during deposition, the effects of argon flow on the characteristics of the DLC films were systematically examined to correlate to the blood compatibility. The microstructure and mechanical properties of the films were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) surface analysis, a nano-indenter and pin-on-disk tribometer. The blood compatibility of the films was evaluated using in vitro platelet adhesion investigation, and the quantity and morphology of the adherent platelets was investigated employing optical microscopy and scanning electron microscopy.The Raman spectroscopy results showed a decreasing sp3 fraction (an increasing trend in ID/IG ratio) with increasing argon flow from 0 to 13 sccm. The sp3:sp2 ratio of the films was evaluated from the deconvoluted XPS spectra. We found that the sp3 fraction decreased as the argon flow was increased from 0 to 13 sccm, which is consistent with the results of the Raman spectra. The mechanical properties results confirmed the decreasing sp3 content with increasing argon flow. The Raman D-band to G-band intensity ratio increased and the platelet adhesion behavior became better with higher flow. This implies that the blood compatibility of the DLC films is influenced by the sp3:sp2 ratio. DLC films deposited on titanium alloys have high wear resistance, low friction and good adhesion.  相似文献   

9.
Here, we report the fabrication of diamond-like carbon (DLC) thin films using pulsed laser deposition (PLD). PLD is a well-established technique for deposition of high-quality DLC thin films. Carbon tape target was ablated using a KrF (248 nm, 25 ns, 20 Hz) excimer laser to deposit DLC films on soap-coated substrates. A laser fluence between 8.5 and 14 J/cm2 and a target to substrate distance of 10 cm was used. These films were then released from substrates to obtain freestanding DLC thin foils. Foil thicknesses from 20 to 200 nm were deposited using this technique to obtain freestanding targets of up to 1-inch square area. Typically, 100-nm-thick freestanding DLC films were characterized using different techniques such as AFM, XPS, and nano-indentation. AFM was used to obtain the film surface roughness of 9 nm rms of the released film. XPS was utilized to obtain 74 % sp2, 23 % sp3, and 3 % C–O bond components. Nano-indentation was used to characterize the film hardness of 10 GPa and Young’s modulus of 110 GPa. Damage threshold properties of the DLC foils were studied (1,064 nm, 6 ns) and found to be 7 × 1010 W/cm2 peak intensity for our best ultrathin DLC foils.  相似文献   

10.
Diamond-like carbon (DLC) films deposited on different substrates by plasma enhanced chemical vapour deposition were investigated. Bonding states and film quality were characterized by FT-IR spectroscopy. The influence of the power of plasma and the deposition time on the sp2/sp3 ratio as well as the concentration of CHn bonds was studied. The influence of sp2/sp3 ratio on the formation process of conducting channels in diamond-like carbon films as a result of electrical breakdown was determined. Reproducible increase of diamond-like carbon film conductivity, with initial sp2/sp3 ratio larger than 0.16, was observed after electrical breakdown.  相似文献   

11.
Sulfur-doped DLC nanocomposite films have been successfully deposited by the electrochemical method using the mixture of methanol and thiofuran as the precursor at ambient atmospheric pressure. In contrast to DLC film, the effects of sulfur incorporation on the microstructural transformation and properties of sulfur-doped DLC nanocomposite films were investigated in detail in terms of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectrum and photoluminescence and magnetic tests. The experimental results showed that the unexpected organic molecular structure was formed like sulfone or thiols in sulfur-doped DLC nanocomposite films, and the concentration of sulfur in films was readily manipulated by the volume ratio of thiofuran to methanol. Meanwhile, the sp3-hybridized carbon content gradually decreased in films as the volume of thiofuran increased. Furthermore, sulfur-doped DLC nanocomposite films showed the monochromatic photoluminescence performance with a wide band centered at 510 nm, which could be attributed to carrier localization within an increasing sp2 clusters and the defects along with the sulfur doping. Particularly, ferro-like magnetic performance of sulfur-doped DLC nanocomposite film might originate from the magnetic moment of localized sp2 clusters with different charged carriers near the Fermi level after sulfur incorporation.  相似文献   

12.
Diamond-like carbon (DLC) films were deposited on Si (1 0 0) substrate using a low energy (219 J) repetitive (1 Hz) miniature plasma focus device. DLC thin film samples were deposited using 10, 20, 50, 100 and 200 focus shots with hydrogen as filling gas at 0.25 mbar. The deposited samples were analyzed by XRD, Raman Spectroscopy, SEM and XPS. XRD results exhibited the diffraction peaks related to SiO2, carbon and SiC. Raman studies verified the formation amorphous carbon with D and G peaks. Corresponding variation in the line width (FWHM) of the D and G positions along with change in intensity ratio (ID/IG) in DLC films was investigated as a function of number of deposition shots. XPS confirmed the formation sp2 (graphite like) and sp3 (diamond like) carbon. The cross-sectional SEM images establish the 220 W repetitive miniature plasma focus device as the high deposition rate facility for DLC with average deposition rate of about 250 nm/min.  相似文献   

13.
Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to −200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at −100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.  相似文献   

14.
The promising applications of the microwave plasmas have been appearing in the fields of chemical processes and semiconductor manufacturing. Applications include surface deposition of all types including diamond/diamond like carbon (DLC) coatings, etching of semiconductors, promotion of organic reactions, etching of polymers to improve bonding of the other materials etc. With a 2.45 GHz. 700 W, microwave induced plasma chemical vapor deposition (CVD) system set up in our laboratory we have deposited diamond like carbon coatings. The microwave plasma generation was effected using a wave guide single mode applicator. We have deposited DLC coatings on the substrates like stainless steel, Cu-Be, Cu and Si. The deposited coatings have been characterized by FTIR, Raman spectroscopy and ellipsometric techniques. The results show that we have achieved depositing ∼95% sp3 bonded carbon in the films. The films are unform with golden yellow color. The films are found to be excellent insulators. The ellipsometric measurements of optical constant on silicon substrates indicate that the films are transparent above 900 nm.  相似文献   

15.
郭栋  蔡锴  李龙土  桂治轮 《物理学报》2001,50(12):2413-2417
在对不同有机溶剂分子结构分析的基础上,选取甲醇、DMF(N,N-二甲基甲酰胺)和乙腈溶液为碳源,以脉冲直流电源电解有机溶液的方法在Si片上制得了含氢类金刚石薄膜(DLC薄膜),并研究了退火对薄膜结构的影响.通过X射线光电子能谱(XPS),喇曼(Raman)和红外(IR)光谱对薄膜的结构进行了分析表征.XPS表明薄膜的主要成分为C,喇曼光谱显示所得薄膜为典型DLC薄膜.喇曼和红外光谱还表明,膜中含有大量H并且主要键合于sp3碳处.随着退火的进行薄膜中的H被去除.随温度升高薄膜电阻率的下 关键词: 类金刚石薄膜 退火  相似文献   

16.
Amorphous diamond like carbon (DLC) and titanium incorporated diamond like carbon (Ti-DLC) thin films were deposited by using reactive-biased target ion beam deposition method. The effects of Ti incorporation and target bias voltage on the microstructure and mechanical properties of the as-deposited films were investigated by means of X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and nano-indentation. It was found that the Ti content in Ti-DLC films gets increased with increasing target bias voltage. At about 4.2 at.% of Ti, uniform sized well dispersed nanocrystals were seen in the DLC matrix. Using FFT analysis, a facility available in the TEM, it was found that the nanocrystals are in cubic TiC phase. Though at the core, the incorporated Ti atoms react with carbon to form cubic TiC; most of the surface exposed Ti atoms were found to react with the atmospheric oxygen to form weakly bonded Ti-O. The presence of TiC nanocrystals greatly modified the sp3/sp2 hybridized bonding ratio and is reflected in mechanical hardness of Ti-DLC films. These films were then tested for their biocompatibility by an invitro cell culturing test. Morphological observation and the cell proliferation test have demonstrated that the human osteoblast cells well attach and proliferate on the surface of Ti incorporated DLC films, suggesting possible applications in bone related implant coatings.  相似文献   

17.
Optical and electrical properties of diamond-like carbon (DLC) films deposited by pulsed laser ablation of graphite target at different substrate temperatures are reported. By varying the deposition temperature from 400 to 25℃, the film optical transparency and electrical resistivity increase severely. Most importantly, the transparency and resistivity properties of the DLC films can be tailored to approaching diamond by adjusting the deposition temperature, which is critical to many applications. DLC films deposited at low temperatures show excellent optical transmittance and high resistivity. Over the same temperature regime an increase of the spa bonded C content is observed using visible Raman spectroscopy, which is responsible for the enhanced transparency and resistivity properties.  相似文献   

18.
We have deposited germanium carbide (Ge1−xCx) films on Si(1 0 0) substrate via radio-frequency (RF) reactive magnetron sputtering in a CH4/Ar mixture discharge, and explored the effects of carbon content (x) on the chemical bonding and hardness for the obtained films. We find that x significantly influences the chemical bonding, which leads to a pronounced change in the hardness of the film. To reveal the relationship between the chemical bonding and hardness, first-principles calculations have been carried out. It is shown that as x increases from 0 to 0.33, the fraction of sp3 C-Ge bonds in the film increases at the expense of Ge-Ge bonds, which promotes formation of a strong covalently bonded network, and thus enhances the hardness of the film. However, as x further increases from 0.33 to 0.59, the fraction of sp3 C-Ge bonds in the film gradually reduces, while that of sp3 C-H and graphite-like sp2 C-C bonds increases, which damages the compact network structure, resulting in a sharp decrease in the hardness. This investigation suggests that the medium x (0.17<x<0.40) is most favorable to the preparation of hard Ge1−xCx films due to the formation of dominant sp3 C-Ge bonds.  相似文献   

19.
利用脉冲辉光放电的方法,在硅片上采用不同的沉积工艺制备了含氢类金刚石膜层,并采用Raman光谱和X射线光电子能谱(XPS)对膜层进行表征.用Raman光谱仪在波长为325 nm的紫外光源的激励下观察膜层的键结构.紫外Raman光谱对含氢类金刚石膜是非常有用的,它能有效避免可见光Raman光谱测量时的荧光干扰,清晰地得到膜层的D峰和G峰.同时利用XPS分析得到膜层的sp3键含量,并与Raman光谱所得数据进行比较.通过Raman光谱和XPS分析可以发现,在紫外光源的激励下,膜层的G峰峰位向高频移方向移动,G峰峰位、I(D)/I(G),G峰半高宽和sp3键含量之间存在一定的关系.  相似文献   

20.
Attempt has been made to deposit diamond like carbon (DLC) films from ethanol through electrodeposition at low voltages (80-300 V) at 1 mm interelectrode separation. The films were characterized by atomic force microscopy (AFM), Scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy and Auger electron Spectroscopy (AES). AFM investigations revealed the grain sizes are of tens of nanometers. The films were found to be continuous, smooth and close packed. Presence of peaks at 2958, 2929 and 2869 cm−1 in FTIR spectrum indicates the bonding states to be of predominantly sp3 type (C-H). Raman spectroscopy analysis revealed two broad bands at ∼1350 and ∼1570 cm−1. The downshift of the G-band of graphite is indicative of presence of DLC. Analysis of the Raman spectra for the samples revealed an improvement in the film quality with increase in the voltage. Micro Raman investigations indicate the formation of diamond phase at the deposition potential of 80 V. The sp2 contents the films calculated from Auger electron spectra were calculated and were found to be 31, 19 and 7.8% for the samples prepared at 80, 150 and 300 V, respectively. A tentative mechanism for the formation of DLC has been proposed. These results indicate the possibility of deposition of DLC at low voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号