首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 258 毫秒
1.
We characterize the absolutely continuous spectrum of the one-dimensional Schrödinger operators \({h = -\Delta + v}\) acting on \({\ell^2(\mathbb{Z}_+)}\) in terms of the limiting behaviour of the Landauer–Büttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting h to a finite interval \({[1, L] \cap \mathbb{Z}_+}\) and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval \({I}\) are non-vanishing in the limit \({L \to \infty}\) iff \({{\rm sp}_{\rm ac}(h) \cap I \neq \emptyset}\). We also discuss the relationship between this result and the Schrödinger Conjecture (Avila, J Am Math Soc 28:579–616, 2015; Bruneau et al., Commun Math Phys 319:501–513, 2013).  相似文献   

2.
We study the determinant \({\det(I-\gamma K_s), 0 < \gamma < 1}\) , of the integrable Fredholm operator K s acting on the interval (?1, 1) with kernel \({K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}\) . This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature \({\beta=2}\) , in the presence of an external potential \({v=-\frac{1}{2}\ln(1-\gamma)}\) supported on an interval of length \({\frac{2s}{\pi}}\) . We evaluate, in particular, the double scaling limit of \({\det(I-\gamma K_s)}\) as \({s\rightarrow\infty}\) and \({\gamma\uparrow 1}\) , in the region \({0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}\) , for any fixed \({0 < \delta < 1}\) . This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).  相似文献   

3.
We prove that \({C^r}\)-smooth (\({r > 2}\)) circle diffeomorphisms with a break, i.e., circle diffeomorphisms with a single singular point where the derivative has a jump discontinuity, are generically, i.e., for almost all irrational rotation numbers, not \({C^{1+\varepsilon}}\)-rigid, for any \({\varepsilon > 0}\). This result complements our recent proof, joint with Khanin (Geom Funct Anal 24:2002–2028, 2014), that such maps are generically \({C^1}\)-rigid. It stands in remarkable contrast to the result of Yoccoz (Ann Sci Ec Norm Sup 17:333–361, 1984) that \({C^r}\)-smooth circle diffeomorphisms are generically \({C^{r-1-\varkappa}}\)-rigid, for any \({\varkappa > 0}\).  相似文献   

4.
In this note, we prove the following inequality: \({2\Vert\Delta_{\eta\varphi}^{\frac s2}\xi_{\varphi}\Vert ^2 \ge \varphi(1)+\eta(1)- \vert\varphi-\eta\vert(1)}\) , where \({\varphi}\) and η are positive normal linear functionals over a von Neumann algebra. This is a generalization of the famous Powers–Størmer inequality (Powers and Størmer proved the inequality for \({L({\mathcal H})}\) in Commun Math Phys 16:1–33, 1970; Takesaki in Theory of Operator Algebras II, 2001). For matrices, this inequality was proven by Audenaert et al. (Phys Rev Lett 98:160501, 2007). We extend their result to general von Neumann algebras.  相似文献   

5.
We introduce the dynamical sine-Gordon equation in two space dimensions with parameter \({\beta}\), which is the natural dynamic associated to the usual quantum sine-Gordon model. It is shown that when \({\beta^{2} \in (0, \frac{16\pi}{3})}\) the Wick renormalised equation is well-posed. In the regime \({\beta^{2} \in (0, 4\pi)}\), the Da Prato–Debussche method [J Funct Anal 196(1):180–210, 2002; Ann Probab 31(4):1900–1916, 2003] applies, while for \({\beta^{2} \in [4\pi, \frac{16\pi}{3})}\), the solution theory is provided via the theory of regularity structures [Hairer, Invent Math 198(2):269–504, 2014]. We also show that this model arises naturally from a class of \({2 + 1}\) -dimensional equilibrium interface fluctuation models with periodic nonlinearities. The main mathematical difficulty arises in the construction of the model for the associated regularity structure where the role of the noise is played by a non-Gaussian random distribution similar to the complex multiplicative Gaussian chaos recently analysed in Lacoin et al. [Commun Math Phys 337(2):569–632, 2015].  相似文献   

6.
We prove that if an initial datum to the incompressible Navier–Stokes equations in any critical Besov space \({\dot B^{-1+\frac 3p}_{p,q}({\mathbb {R}}^{3})}\), with \({3 < p, q < \infty}\), gives rise to a strong solution with a singularity at a finite time \({T > 0}\), then the norm of the solution in that Besov space becomes unbounded at time T. This result, which treats all critical Besov spaces where local existence is known, generalizes the result of Escauriaza et al. (Uspekhi Mat Nauk 58(2(350)):3–44, 2003) concerning suitable weak solutions blowing up in \({L^{3}({\mathbb R}^{3})}\). Our proof uses profile decompositions and is based on our previous work (Gallagher et al., Math. Ann. 355(4):1527–1559, 2013), which provided an alternative proof of the \({L^{3}({\mathbb R}^{3})}\) result. For very large values of p, an iterative method, which may be of independent interest, enables us to use some techniques from the \({L^{3}({\mathbb R}^{3})}\) setting.  相似文献   

7.
We present a new scale \(\mathcal {U}^{t,s}_p\) (\(s<-t<0\) and \(1\le p <\infty \)) of anisotropic Banach spaces, defined via Paley–Littlewood, on which the transfer operator \(\mathcal {L}_g \varphi = (g \cdot \varphi ) \circ T^{-1}\) associated to a hyperbolic dynamical system T has good spectral properties. When \(p=1\) and t is an integer, the spaces are analogous to the “geometric” spaces \(\mathcal {B}^{t,|s+t|}\) considered by Gouëzel and Liverani (Ergod Theory Dyn Syst 26:189–217, 2006). When \(p>1\) and \(-1+1/p<s<-t<0<t<1/p\), the spaces are somewhat analogous to the geometric spaces considered by Demers and Liverani (Trans Am Math Soc 360:4777–4814, 2008). In addition, just like for the “microlocal” spaces defined by Baladi and Tsujii (Ann Inst Fourier 57:127–154, 2007) (or Faure–Roy–Sjöstrand in Open Math J 1:35–81, 2008), the transfer operator acting on \(\mathcal {U}^{t,s}_p\) can be decomposed into \(\mathcal {L}_{g,b}+\mathcal {L}_{g,c}\), where \(\mathcal {L}_{g,b}\) has a controlled norm while a suitable power of \(\mathcal {L}_{g,c}\) is nuclear. This “nuclear power decomposition” enhances the Lasota–Yorke bounds and makes the spaces \(\mathcal {U}^{t,s}_p\) amenable to the kneading approach of Milnor–Thurson (Dynamical Systems (Maryland 1986–1987), Springer, Berlin, 1988) (as revisited by Baladi–Ruelle, Baladi in Dynamical Zeta Functions and Dynamical Determinants for Hyperbolic Maps, Monograph, 2016; Baladi and Ruelle in Ergod Theory Dyn Syst 14:621–632, 1994; Baladi and Ruelle in Invent Math 123:553–574, 1996) to study dynamical determinants and zeta functions.  相似文献   

8.
An \({\alpha}\)nn three-cluster model of the \({^6}\)He nucleus is studied by solving the Faddeev equations, where the cluster potential between \({\alpha}\) and n takes into account the Pauli exclusion correction, using the Fish-Bone Optical Model (Schmid in Z Phys A 297:105, 1980). The resulting binding energy of the ground state (\({0^+}\)) is 0.831 MeV and the resonance energy of the first excited state (\({2^+}\)), 0.60–i0.012 MeV, is extracted from the three-cluster break-up threshold. These theoretical values are in reasonable agreement with the experimental data: 0.973 MeV and 0.824–i0.056 MeV, respectively. In order to investigate the structure of these states, we calculate the angle density matrix for the \({\angle n_1 \alpha n_2}\) angle in the triangle formed by the three clusters. The angle density matrix of the ground state has two peaks and the configuration of \({0^+}\) wave function corresponding to the peaks constitutes a mixture of an acute-angled triangle structure and an obtuse-angled one. This finding is consistent with the former result from a variational approach (Hagino and Sagawa in Phys Rev C 72:044321, 2005). On the other hand, in the case of \({2^+}\) state only a single peak is obtained.  相似文献   

9.
In this paper, we consider families of operators \({\{x_r\}_{r \in \Lambda}}\) in a tracial C*-probability space \({({\mathcal{A}}, \varphi)}\) , whose joint *-distribution is invariant under free complexification and the action of the hyperoctahedral quantum groups \({\{H_n^+\}_{n \in \mathbb {N}}}\) . We prove a strong form of Haagerup’s inequality for the non-self-adjoint operator algebra \({{\mathcal{B}}}\) generated by \({\{x_r\}_{r \in \Lambda}}\) , which generalizes the strong Haagerup inequalities for *-free R-diagonal families obtained by Kemp–Speicher (J Funct Anal 251:141–173, 2007). As an application of our result, we show that \({{\mathcal{B}}}\) always has the metric approximation property (MAP). We also apply our techniques to study the reduced C*-algebra of the free unitary quantum group \({U_n^+}\) . We show that the non-self-adjoint subalgebra \({{\mathcal{B}}_n}\) generated by the matrix elements of the fundamental corepresentation of \({U_n^+}\) has the MAP. Additionally, we prove a strong Haagerup inequality for \({{\mathcal{B}}_n}\) , which improves on the estimates given by Vergnioux’s property RD (Vergnioux in J Oper Theory 57:303–324, 2007).  相似文献   

10.
We prove the global existence of the unique mild solution for the Cauchy problem of the cut-off Boltzmann equation for soft potential model \(\gamma =2-N\) with initial data small in \(L^N_{x,v}\) where \(N=2,3\) is the dimension. The proof relies on the existing inhomogeneous Strichartz estimates for the kinetic equation by Ovcharov (SIAM J Math Anal 43(3):1282–1310, 2011) and convolution-like estimates for the gain term of the Boltzmann collision operator by Alonso et al. (Commun Math Phys 298:293–322, 2010). The global dynamics of the solution is also characterized by showing that the small global solution scatters with respect to the kinetic transport operator in \(L^N_{x,v}\). Also the connection between function spaces and cut-off soft potential model \(-N<\gamma <2-N\) is characterized in the local well-posedness result for the Cauchy problem with large initial data.  相似文献   

11.
We use the Fourier based Gabetta–Toscani–Wennberg metric \(d_2\) to study the rate of convergence to equilibrium for the Kac model in 1 dimension. We take the initial velocity distribution of the particles to be a Borel probability measure \(\mu \) on \(\mathbb {R}^n\) that is symmetric in all its variables, has mean \(\vec {0}\) and finite second moment. Let \(\mu _t(dv)\) denote the Kac-evolved distribution at time t, and let \(R_\mu \) be the angular average of \(\mu \). We give an upper bound to \(d_2(\mu _t, R_\mu )\) of the form \(\min \left\{ B e^{-\frac{4 \lambda _1}{n+3}t}, d_2(\mu ,R_\mu )\right\} ,\) where \(\lambda _1 = \frac{n+2}{2(n-1)}\) is the gap of the Kac model in \(L^2\) and B depends only on the second moment of \(\mu \). We also construct a family of Schwartz probability densities \(\{f_0^{(n)}: \mathbb {R}^n\rightarrow \mathbb {R}\}\) with finite second moments that shows practically no decrease in \(d_2(f_0(t), R_{f_0})\) for time at least \(\frac{1}{2\lambda }\) with \(\lambda \) the rate of the Kac operator. We also present a propagation of chaos result for the partially thermostated Kac model in Tossounian and Vaidyanathan (J Math Phys 56(8):083301, 2015).  相似文献   

12.
In this article we investigate spectral properties of the coupling \({H + V_\lambda}\), where \({H = -i\alpha \cdot \nabla+m\beta}\) is the free Dirac operator in \({\mathbb{R}^3}\), \({m > 0}\) and \({V_\lambda}\) is an electrostatic shell potential (which depends on a parameter \({\lambda \in \mathbb{R}}\)) located on the boundary of a smooth domain in \({\mathbb{R}^3}\). Our main result is an isoperimetric-type inequality for the admissible range of \({\lambda}\)’s for which the coupling \({H + V_\lambda}\) generates pure point spectrum in \({(-m, m)}\). That the ball is the unique optimizer of this inequality is also shown. Regarding some ingredients of the proof, we make use of the Birman–Schwinger principle adapted to our setting in order to prove some monotonicity property of the admissible \({\lambda}\)’s, and we use this to relate the endpoints of the admissible range of \({\lambda}\)’s to the sharp constant of a quadratic form inequality, from which the isoperimetric-type inequality is derived.  相似文献   

13.
We investigate static and spherically symmetric black hole solutions in the generalized Proca theory which corresponds to the generalization of the shift-symmetric scalar–tensor Horndeski theory to the vector–tensor theory. Any solution obtained in this paper possesses a constant spacetime norm of the vector field, \(X:=-\frac{1}{2}g^{\mu \nu }A_\mu A_\nu =X_0=\mathrm{constant}\). The solutions in the theory with generalized quartic coupling \(G_4(X)\) generalize the stealth Schwarzschild and the Schwarzschild- (anti-) de Sitter solutions obtained in the theory with the nonminimal coupling to the Einstein tensor \(G^{\mu \nu } A_\mu A_\nu \). While in the vector–tensor theory with the coupling \(G^{\mu \nu }A_\mu A_\nu \) the electric charge does not explicitly affect the spacetime geometry, in more general cases with nonzero \(G_{4XX}(X_0)\ne 0\) this property does not hold in general. The solutions in the theory with generalized cubic coupling \(G_3(X)\) are given by the Schwarzschild- (anti-) de Sitter spacetime, where the dependence on \(G_3(X)\) does not appear in the metric function.  相似文献   

14.
The 2D Discrete Gaussian model gives each height function \({\eta : {\mathbb{Z}^2\to\mathbb{Z}}}\) a probability proportional to \({\exp(-\beta \mathcal{H}(\eta))}\), where \({\beta}\) is the inverse-temperature and \({\mathcal{H}(\eta) = \sum_{x\sim y}(\eta_x-\eta_y)^2}\) sums over nearest-neighbor bonds. We consider the model at large fixed \({\beta}\), where it is flat unlike its continuous analog (the Discrete Gaussian Free Field). We first establish that the maximum height in an \({L\times L}\) box with 0 boundary conditions concentrates on two integers M, M + 1 with \({M\sim \sqrt{(1/2\pi\beta)\log L\log\log L}}\). The key is a large deviation estimate for the height at the origin in \({\mathbb{Z}^{2}}\), dominated by “harmonic pinnacles”, integer approximations of a harmonic variational problem. Second, in this model conditioned on \({\eta\geq 0}\) (a floor), the average height rises, and in fact the height of almost all sites concentrates on levels H, H + 1 where \({H\sim M/\sqrt{2}}\). This in particular pins down the asymptotics, and corrects the order, in results of Bricmont et al. (J. Stat. Phys. 42(5–6):743–798, 1986), where it was argued that the maximum and the height of the surface above a floor are both of order \({\sqrt{\log L}}\). Finally, our methods extend to other classical surface models (e.g., restricted SOS), featuring connections to p-harmonic analysis and alternating sign matrices.  相似文献   

15.
It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10}\times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).  相似文献   

16.
We give, as L grows to infinity, an explicit lower bound of order \({L^{\frac{n}{m}}}\) for the expected Betti numbers of the vanishing locus of a random linear combination of eigenvectors of P with eigenvalues below L. Here, P denotes an elliptic self-adjoint pseudo-differential operator of order \({m > 0}\), bounded from below and acting on the sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M equipped with some Lebesgue measure. In fact, for every closed hypersurface \({\Sigma}\) of \({\mathbb{R}^n}\), we prove that there exists a positive constant \({p_\Sigma}\) depending only on \({\Sigma}\), such that for every large enough L and every \({x \in M}\), a component diffeomorphic to \({\Sigma}\) appears with probability at least \({p_\Sigma}\) in the vanishing locus of a random section and in the ball of radius \({L^{-\frac{1}{m}}}\) centered at x. These results apply in particular to Laplace–Beltrami and Dirichlet-to-Neumann operators.  相似文献   

17.
Our article is devoted to the study of the rare \({B \to K^\ast \ell^+\ell^-}\) decay where \({\ell=e,\mu,\tau}\). We compute the relevant form factors in the framework of the covariant quark model with infrared confinement in the full kinematical momentum transfer region. The calculated form factors are used to evaluate branching fractions and polarization observables in the cascade decay \({B \to K^\ast(\to K\pi)\ell^+\ell^-}\). We compare the obtained results with available experimental data and the results from other theoretical approaches.  相似文献   

18.
We present a direct construction of compact real forms of the trigonometric and elliptic \({n}\)-particle Ruijsenaars–Schneider systems whose completed center-of-mass phase space is the complex projective space \({{\mathbb{CP}}^{n-1}}\) with the Fubini–Study symplectic structure. These systems are labeled by an integer \({p\in\{1,\ldots,n-1\}}\) relative prime to \({n}\) and a coupling parameter \({y}\) varying in a certain punctured interval around \({p\pi/n}\). Our work extends Ruijsenaars’s pioneering study of compactifications that imposed the restriction \({0 < y < \pi/n}\), and also builds on an earlier derivation of more general compact trigonometric systems by Hamiltonian reduction.  相似文献   

19.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

20.
Calibrations are given to extract orientation order parameters from pseudo-powder electron paramagnetic resonance line shapes of 14N-nitroxide spin labels undergoing slow rotational diffusion. The nitroxide z-axis is assumed parallel to the long molecular axis. Stochastic-Liouville simulations of slow-motion 9.4-GHz spectra for molecular ordering with a Maier–Saupe orientation potential reveal a linear dependence of the splittings, \(2A_{\hbox{max} }\) and \(2A_{\hbox{min} }\), of the outer and inner peaks on order parameter \(S_{zz}\) that depends on the diffusion coefficient \(D_{{{\text{R}} \bot }}\) which characterizes fluctuations of the long molecular axis. This results in empirical expressions for order parameter and isotropic hyperfine coupling: \(S_{zz} = s_{1} \times \left( {A_{\hbox{max} } - A_{\hbox{min} } } \right) - s_{o}\) and \(a_{o}^{{}} = \tfrac{1}{3}\left( {f_{\hbox{max} } A_{\hbox{max} } + f_{\hbox{min} } A_{\hbox{min} } } \right) + \delta a_{o}\), respectively. Values of the calibration constants \(s_{1}\), \(s_{\text{o}}\), \(f_{\hbox{max} }\), \(f_{\hbox{min} }\) and \(\delta a_{o}\) are given for different values of \(D_{{{\text{R}} \bot }}\) in fast and slow motional regimes. The calibrations are relatively insensitive to anisotropy of rotational diffusion \((D_{{{\text{R}}//}} \ge D_{{{\text{R}} \bot }} )\), and corrections are less significant for the isotropic hyperfine coupling than for the order parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号