首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Lie algebra \({\mathcal{D}}\) of regular differential operators on the circle has a universal central extension \({\hat{\mathcal{D}}}\). The invariant subalgebra \({\hat{\mathcal{D}}^+}\) under an involution preserving the principal gradation was introduced by Kac, Wang, and Yan. The vacuum \({\hat{\mathcal{D}}^+}\)-module with central charge \({c \in \mathbb{C}}\), and its irreducible quotient \({\mathcal{V}_c}\), possess vertex algebra structures, and \({\mathcal{V}_c}\) has a nontrivial structure if and only if \({c \in \frac{1}{2}\mathbb{Z}}\). We show that for each integer \({n > 0}\), \({\mathcal{V}_{n/2}}\) and \({\mathcal{V}_{-n}}\) are \({\mathcal{W}}\)-algebras of types \({\mathcal{W}(2, 4,\dots,2n)}\) and \({\mathcal{W}(2, 4,\dots, 2n^2 + 4n)}\), respectively. These results are formal consequences of Weyl’s first and second fundamental theorems of invariant theory for the orthogonal group \({{\rm O}(n)}\) and the symplectic group \({{\rm Sp}(2n)}\), respectively. Based on Sergeev’s theorems on the invariant theory of \({{\rm Osp}(1, 2n)}\) we conjecture that \({\mathcal{V}_{-n+1/2}}\) is of type \({\mathcal{W}(2, 4,\dots, 4n^2 + 8n + 2)}\), and we prove this for \({n = 1}\). As an application, we show that invariant subalgebras of \({\beta\gamma}\)-systems and free fermion algebras under arbitrary reductive group actions are strongly finitely generated.  相似文献   

2.
We consider bond percolation on \({\mathbb {Z}}^d\times {\mathbb {Z}}^s\) where edges of \({\mathbb {Z}}^d\) are open with probability \(p<p_c({\mathbb {Z}}^d)\) and edges of \({\mathbb {Z}}^s\) are open with probability q, independently of all others. We obtain bounds for the critical curve in (pq), with p close to the critical threshold \(p_c({\mathbb {Z}}^d)\). The results are related to the so-called dimensional crossover from \({\mathbb {Z}}^d\) to \({\mathbb {Z}}^{d+s}\).  相似文献   

3.
We develop a general instability index theory for an eigenvalue problem of the type \({\mathcal{L} u=\lambda u'}\), for a class of self-adjoint operators \({\mathcal{L}}\) on the line R1. More precisely, we construct an Evans-like function to show (a real eigenvalue) instability in terms of a Vakhitov–Kolokolov type condition on the wave. If this condition fails, we show by means of Lyapunov–Schmidt reduction arguments and the Kapitula–Kevrekidis–Sandstede index theory that spectral stability holds. Thus, we have a complete spectral picture, under fairly general assumptions on \({\mathcal{L}}\). We apply the theory to a wide variety of examples. For the generalized Bullough–Dodd–Tzitzeica type models, we give instability results for travelling waves. For the generalized short pulse/Ostrovsky/Vakhnenko model, we construct (almost) explicit peakon solutions, which are found to be unstable, for all values of the parameters.  相似文献   

4.
It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10}\times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).  相似文献   

5.
By including the interference effect between the QCD and the QED diagrams, we carry out a complete analysis on the exclusive productions of \(e^+e^- \rightarrow J/\psi +\chi _{cJ}\) (\(J=0,1,2\)) at the B factories with \(\sqrt{s}=10.6\) GeV at the next-to-leading-order (NLO) level in \(\alpha _s\), within the nonrelativistic QCD framework. It is found that the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms that represent the tree-level interference are comparable with the usual NLO QCD corrections, especially for the \(\chi _{c1}\) and \(\chi _{c2}\) cases. To explore the effect of the higher-order terms, namely \({\mathcal {O}} (\alpha ^3\alpha _s^2)\), we perform the QCD corrections to these \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms for the first time, which are found to be able to significantly influence the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order results. In particular, in the case of \(\chi _{c1}\) and \(\chi _{c2}\), the newly calculated \({\mathcal {O}} (\alpha ^3\alpha _s^2)\)-order terms can to a large extent counteract the \({\mathcal {O}} (\alpha ^3\alpha _s)\) contributions, evidently indicating the indispensability of the corrections. In addition, we find that, as the collision energy rises, the percentage of the interference effect in the total cross section will increase rapidly, especially for the \(\chi _{c1}\) case.  相似文献   

6.
We introduce ‘braidability’ as a new symmetry for infinite sequences of noncommutative random variables related to representations of the braid group \({\mathbb{B}_{\infty}}\) . It provides an extension of exchangeability which is tied to the symmetric group \({\mathbb{S}_{\infty}}\) . Our key result is that braidability implies spreadability and thus conditional independence, according to the noncommutative extended de Finetti theorem [Kös08]. This endows the braid groups \({\mathbb{B}_{n}}\) with a new intrinsic (quantum) probabilistic interpretation. We underline this interpretation by a braided extension of the Hewitt-Savage Zero-One Law. Furthermore we use the concept of product representations of endomorphisms [Goh04] with respect to certain Galois type towers of fixed point algebras to show that braidability produces triangular towers of commuting squares and noncommutative Bernoulli shifts. As a specific case we study the left regular representation of \({\mathbb{B}_{\infty}}\) and the irreducible subfactor with infinite Jones index in the non-hyperfinite I I 1-factor L \({(\mathbb{B}_{\infty})}\) related to it. Our investigations reveal a new presentation of the braid group \({\mathbb{B}_{\infty}}\) , the ‘square root of free generator presentation’ \({\mathbb{F}^{1/2}_{\infty}}\) . These new generators give rise to braidability while the squares of them yield a free family. Hence our results provide another facet of the strong connection between subfactors and free probability theory [GJS07]; and we speculate about braidability as an extension of (amalgamated) freeness on the combinatorial level.  相似文献   

7.
In this paper, we analyze cosmological consequences of the reconstructed generalized ghost pilgrim dark energy \({\mathcal {F}}(T,T_{\mathcal {G}})\) models in terms of redshift parameter z. For this purpose, we consider power-law scale factor, scale factor for two unified phases and intermediate scale factor. We discuss graphical behavior of the reconstructed models and examine their stability analysis. Also, we explore the behavior of equation of state as well as deceleration parameters and \(\omega _{\Lambda }-\omega _{\Lambda }^{'}\) as well as \(r-s\) planes. It is found that all models are stable for pilgrim dark energy parameter 2. The equation of state parameter satisfies the necessary condition for pilgrim dark energy phenomenon for all scale factors. All other cosmological parameters show great consistency with the current behavior of the universe.  相似文献   

8.
We prove that \(\mathcal{N}=2\) theories that arise by taking n free hypermultiplets and gauging a subgroup of \({\text {Sp}}(n)\), the non-R global symmetry of the free theory, have a remaining global symmetry, which is a direct sum of unitary, symplectic, and special orthogonal factors. This implies that theories that have \({\text {SU}}(N)\) but not \({\text {U}}(N)\) global symmetries, such as Gaiotto’s \(T_N\) theories, are not likely to arise as IR fixed points of RG flows from weakly coupled \({\mathcal{N}=2}\) gauge theories.  相似文献   

9.
A quantum system (with Hilbert space \({\mathcal {H}_{1}}\)) entangled with its environment (with Hilbert space \({\mathcal {H}_{2}}\)) is usually not attributed to a wave function but only to a reduced density matrix \({\rho_{1}}\). Nevertheless, there is a precise way of attributing to it a random wave function \({\psi_{1}}\), called its conditional wave function, whose probability distribution \({\mu_{1}}\) depends on the entangled wave function \({\psi \in \mathcal {H}_{1} \otimes \mathcal {H}_{2}}\) in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of \({\mathcal {H}_{2}}\) but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about \({\mu_{1}}\), e.g., that if the environment is sufficiently large then for every orthonormal basis of \({\mathcal {H}_{2}}\), most entangled states \({\psi}\) with given reduced density matrix \({\rho_{1}}\) are such that \({\mu_{1}}\) is close to one of the so-called GAP (Gaussian adjusted projected) measures, \({GAP(\rho_{1})}\). We also show that, for most entangled states \({\psi}\) from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval \({[E, E+ \delta E]}\)) and most orthonormal bases of \({\mathcal {H}_{2}}\), \({\mu_{1}}\) is close to \({GAP(\rm {tr}_{2} \rho_{mc})}\) with \({\rho_{mc}}\) the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then \({\mu_{1}}\) is close to \({GAP(\rho_\beta)}\) with \({\rho_\beta}\) the canonical density matrix on \({\mathcal {H}_{1}}\) at inverse temperature \({\beta=\beta(E)}\). This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.  相似文献   

10.
We show in the present paper that pseudo-Hermitian Hamiltonian systems with even \(\mathcal {P}\mathcal {T}\)-symmetry \((\mathcal {P}^{2}=1,\mathcal {T}^{2}=1)\) admit a degeneracy structure. This kind of degeneracy is expected traditionally in the odd \(\mathcal {P}\mathcal {T}\)-symmetric systems \((\mathcal {P}^{2}=1,\mathcal {T}^{2}=-1)\) which is appropriate to the fermions (Scolarici and Solombrino, Phys. Lett. A 303, 239 2002; Jones-Smith and Mathur, Phys. Rev. A 82, 042101 2010). We establish that the pseudo-Hermitian Hamiltonians with even \(\mathcal {P}\mathcal {T}\)-symmetry admit a degeneracy structure if the operator \(\mathcal {PT}\) anticommutes with the metric operator η σ which is necessarily indefinite. We also show that the Krein space formulation of the Hilbert space is the convenient framework for the implementation of unbroken \(\mathcal {P}\mathcal {T}\)-symmetry. These general results are illustrated with great details for four-level pseudo-Hermitian Hamiltonian with even \(\mathcal {P}\mathcal {T}\) -symmetry.  相似文献   

11.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

12.
Given a fusion category \({\mathcal C}\) and an indecomposable \({\mathcal C}\)-module category \({\mathcal M}\), the fusion category \({\mathcal C}^*_{_{{\mathcal M}}}\) of \({\mathcal C}\)-module endofunctors of \({\mathcal M}\) is called the (Morita) dual fusion category of \({\mathcal C}\) with respect to \({\mathcal M}\). We describe tensor functors between two arbitrary duals \({\mathcal C}^*_{_{{\mathcal M}}}\) and \({\mathcal D}^*_{\mathcal N}\) in terms of data associated to \({\mathcal C}\) and \({\mathcal D}\). We apply the results to G-equivariantizations of fusion categories and group-theoretical fusion categories. We describe the orbits of the action of the Brauer–Picard group on the set of module categories and we propose a categorification of the Rosenberg–Zelinsky sequence for fusion categories.  相似文献   

13.
We consider a quantum system \({\mathcal{S}}\) interacting sequentially with independent systems \({\mathcal{E}_m}\) , m = 1,2,... Before interacting, each \({\mathcal{E}_m}\) is in a possibly random state, and each interaction is characterized by an interaction time and an interaction operator, both possibly random. We prove that any initial state converges to an asymptotic state almost surely in the ergodic mean, provided the couplings satisfy a mild effectiveness condition. We analyze the macroscopic properties of the asymptotic state and show that it satisfies a second law of thermodynamics. We solve exactly a model in which \({\mathcal{S}}\) and all the \({\mathcal{E}_m}\) are spins: we find the exact asymptotic state, in case the interaction time, the temperature, and the excitation energies of the \({\mathcal{E}_m}\) vary randomly. We analyze a model in which \({\mathcal{S}}\) is a spin and the \({\mathcal{E}_m}\) are thermal fermion baths and obtain the asymptotic state by rigorous perturbation theory, for random interaction times varying slightly around a fixed mean, and for small values of a coupling constant.  相似文献   

14.
The quantum double of the Haagerup subfactor, the first irreducible finite depth subfactor with index above 4, is the most obvious candidate for exotic modular data. We show that its modular data \({\mathcal{D}{\rm Hg}}\) fits into a family \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) , where n ≥  0 and \({\omega\in \mathbb{Z}_{2n+1}}\) . We show \({\mathcal{D}^0 {\rm Hg}_{2n+1}}\) is related to the subfactors Izumi hypothetically associates to the cyclic groups \({\mathbb{Z}_{2n+1}}\) . Their modular data comes equipped with canonical and dual canonical modular invariants; we compute the corresponding alpha-inductions, etc. In addition, we show there are (respectively) 1, 2, 0 subfactors of Izumi type \({\mathbb{Z}_7, \mathbb{Z}_9}\) and \({\mathbb{Z}_3^2}\) , and find numerical evidence for 2, 1, 1, 1, 2 subfactors of Izumi type \({\mathbb{Z}_{11},\mathbb{Z}_{13},\mathbb{Z}_{15},\mathbb{Z}_{17},\mathbb{Z}_{19}}\) (previously, Izumi had shown uniqueness for \({\mathbb{Z}_3}\) and \({\mathbb{Z}_5}\)), and we identify their modular data. We explain how \({\mathcal{D}{\rm Hg}}\) (more generally \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\)) is a graft of the quantum double \({\mathcal{D} Sym(3)}\) (resp. the twisted double \({\mathcal{D}^\omega D_{2n+1}}\)) by affine so(13) (resp. so\({(4n^2+4n+5)}\)) at level 2. We discuss the vertex operator algebra (or conformal field theory) realisation of the modular data \({\mathcal{D}^\omega {\rm Hg}_{2n+1}}\) . For example we show there are exactly 2 possible character vectors (giving graded dimensions of all modules) for the Haagerup VOA at central charge c = 8. It seems unlikely that any of this twisted Haagerup-Izumi modular data can be regarded as exotic, in any reasonable sense.  相似文献   

15.
Consider the focussing cubic nonlinear Schrödinger equation in \({\mathbb{R}}^3\) :
$i\psi_t+\Delta\psi = -|\psi|^2 \psi. \quad (0.1) $
It admits special solutions of the form e itα ?, where \(\phi \in {\mathcal{S}}({\mathbb{R}}^3)\) is a positive (? > 0) solution of
$-\Delta \phi + \alpha\phi = \phi^3. \quad (0.2)$
The space of all such solutions, together with those obtained from them by rescaling and applying phase and Galilean coordinate changes, called standing waves, is the 8-dimensional manifold that consists of functions of the form \(e^{i(v \cdot + \Gamma)} \phi(\cdot - y, \alpha)\) . We prove that any solution starting sufficiently close to a standing wave in the \(\Sigma = W^{1, 2}({\mathbb{R}}^3) \cap |x|^{-1}L^2({\mathbb{R}}^3)\) norm and situated on a certain codimension-one local Lipschitz manifold exists globally in time and converges to a point on the manifold of standing waves. Furthermore, we show that \({\mathcal{N}}\) is invariant under the Hamiltonian flow, locally in time, and is a centre-stable manifold in the sense of Bates, Jones [BatJon]. The proof is based on the modulation method introduced by Soffer and Weinstein for the L 2-subcritical case and adapted by Schlag to the L 2-supercritical case. An important part of the proof is the Keel-Tao endpoint Strichartz estimate in \({\mathbb{R}}^3\) for the nonselfadjoint Schrödinger operator obtained by linearizing (0.1) around a standing wave solution. All results in this paper depend on the standard spectral assumption that the Hamiltonian
$\mathcal H = \left ( \begin{array}{cc}\Delta + 2\phi(\cdot, \alpha)^2 - \alpha &;\quad \phi(\cdot, \alpha)^2 \\ -\phi(\cdot, \alpha)^2 &;\quad -\Delta - 2 \phi(\cdot, \alpha)^2 + \alpha \end{array}\right ) \quad (0.3)$
has no embedded eigenvalues in the interior of its essential spectrum \((-\infty, -\alpha) \cup (\alpha, \infty)\) .
  相似文献   

16.
In the framework of algebraic quantum field theory, we study the category \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) of stringlike localised representations of a net of observables \({\mathcal{O} \mapsto \mathfrak{A}(\mathcal{O})}\) in three dimensions. It is shown that compactly localised (DHR) representations give rise to a non-trivial centre of \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) with respect to the braiding. This implies that \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) cannot be modular when non-trivial DHR sectors exist. Modular tensor categories, however, are important for topological quantum computing. For this reason, we discuss a method to remove this obstruction to modularity.Indeed, the obstruction can be removed by passing from the observable net \({\mathfrak{A}(\mathcal{O})}\) to the Doplicher-Roberts field net \({\mathfrak{F}(\mathcal{O})}\). It is then shown that sectors of \({\mathfrak{A}}\) can be extended to sectors of the field net that commute with the action of the corresponding symmetry group. Moreover, all such sectors are extensions of sectors of \({\mathfrak{A}}\). Finally, the category \({\Delta_{{\rm BF}}^{\mathfrak{F}}}\) of sectors of \({\mathfrak{F}}\) is studied by investigating the relation with the categorical crossed product of \({\Delta_{{\rm BF}}^{\mathfrak{A}}}\) by the subcategory of DHR representations. Under appropriate conditions, this completely determines the category \({\Delta_{{\rm BF}}^{\mathfrak{F}}}\).  相似文献   

17.
We consider the Schrödinger equation with a combination of Deng–Fan-type and harmonic terms. To solve the corresponding differential equation, we split the equation to two parts: the parent and the perturbation terms. We use the Nikiforov–Uvarov technique to solve the parent part. For the perturbation part, we apply the series expansion method. Next, using the calculated wave function, we investigate some bottom and charm mesons within the Isgur–Wise function formalism. We present especially semileptonic \({\bar{B} \rightarrow D\ell \bar{\nu}}\) and \({\bar{B}_{s} \rightarrow D_s \ell \bar{\nu }}\) decay widths, branching ratios and \({|V_{cb}|}\) (element of the CKM matrix). Masses of some pseudoscalar mesons are also indicated. Comparisons of our results with experimental values and other approaches are included.  相似文献   

18.
In this paper, we propose a new procedure to deform spectral triples and their quantum isometry groups. The deformation data are a spectral triple \((\mathcal {A},\mathcal {H}, D)\), a compact quantum group \({\mathbb {G}}\) acting algebraically and by orientation-preserving isometries on \((\mathcal {A},\mathcal {H},D)\) and a unitary fiber functor \(\psi \) on \({\mathbb {G}}\). The deformation procedure is a proper generalization of the cocycle deformation of Goswami and Joardar.  相似文献   

19.
By exploiting suitably constrained Zorn matrices, we present a new construction of the algebra of sextonions (over the algebraically closed field \(\mathbb {C}\)). This allows for an explicit construction, in terms of Jordan pairs, of the non-semisimple Lie algebra \(\mathbf {e}_{\mathbf{7} \frac{\mathbf{1}}{\mathbf{2}}}\), intermediate between \(\mathbf {e_7}\) and \(\mathbf {e_8}\), as well as of all Lie algebras occurring in the sextonionic row and column of the extended Freudenthal Magic Square.  相似文献   

20.
For a Hopf algebra B, we endow the Heisenberg double \({\mathcal{H}(B^*)}\) with the structure of a module algebra over the Drinfeld double \({\mathcal{D}(B)}\). Based on this property, we propose that \({\mathcal{H}(B^*)}\) is to be the counterpart of the algebra of fields on the quantum-group side of the Kazhdan–Lusztig duality between logarithmic conformal field theories and quantum groups. As an example, we work out the case where B is the Taft Hopf algebra related to the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) quantum group that is Kazhdan–Lusztig-dual to (p,1) logarithmic conformal models. The corresponding pair \({(\mathcal{D}(B),\mathcal{H}(B^*))}\) is “truncated” to \({(\overline{\mathcal{U}}_{\mathfrak{q}} s\ell2,\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2))}\), where \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)}\) is a \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\) module algebra that turns out to have the form \({\overline{\mathcal{H}}_{\mathfrak{q}} s\ell(2)=\mathbb{C}_{\mathfrak{q}}[z,\partial]\otimes\mathbb{C}[\lambda]/(\lambda^{2p}-1)}\), where \({\mathbb{C}_{\mathfrak{q}}[z,\partial]}\) is the \({\overline{\mathcal{U}}_{\mathfrak{q}} s\ell(2)}\)-module algebra with the relations z p  = 0, ? p  = 0, and \({\partial z = \mathfrak{q}-\mathfrak{q}^{-1} + \mathfrak{q}^{-2} z\partial}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号