首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the boundary singularity of the solutions to the Boltzmann equation in the kinetic theory. The solution has a jump discontinuity in the microscopic velocity \({\zeta}\) on the boundary and a secondary singularity of logarithmic type around the velocity tangential to the boundary, \({\zeta_{n} \sim 0_{-}}\), where \({\zeta_{n}}\) is the component of molecular velocity normal to the boundary, pointing to the gas. We demonstrate this secondary singularity by obtaining an asymptotic formula for the derivative of the solution on the boundary with respect to \({\zeta_{n}}\) that diverges logarithmically when \({\zeta_{n} \sim 0_{-}}\). Our study is for the thermal transpiration problem between two plates for the hard sphere gases with sufficiently large Knudsen number and with the diffuse reflection boundary condition. The solution is constructed and its singularity is studied by an iteration procedure.  相似文献   

2.
We study the problem of stability and instability of extreme Reissner-Nordström spacetimes for linear scalar perturbations. Specifically, we consider solutions to the linear wave equation \({\square_{g}\psi=0}\) on a suitable globally hyperbolic subset of such a spacetime, arising from regular initial data prescribed on a Cauchy hypersurface Σ0 crossing the future event horizon \({\mathcal{H}^{+}}\) . We obtain boundedness, decay and non-decay results. Our estimates hold up to and including the horizon \({\mathcal{H}^{+}}\) . The fundamental new aspect of this problem is the degeneracy of the redshift on \({\mathcal{H}^{+}}\) . Several new analytical features of degenerate horizons are also presented.  相似文献   

3.
We obtain a natural extension of the Vlasov–Poisson system for stellar dynamics to spaces of constant Gaussian curvature \({\kappa \ne 0}\): the unit sphere \({\mathbb S^2}\), for \({\kappa > 0}\), and the unit hyperbolic sphere \({\mathbb H^2}\), for \({\kappa < 0}\). These equations can be easily generalized to higher dimensions. When the particles move on a geodesic, the system reduces to a 1-dimensional problem that is more singular than the classical analogue of the Vlasov–Poisson system. In the analysis of this reduced model, we study the well-posedness of the problem and derive Penrose-type conditions for linear stability around homogeneous solutions in the sense of Landau damping.  相似文献   

4.
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.  相似文献   

5.
It is well known that quantum correlations for bipartite dichotomic measurements are those of the form \({\gamma=(\langle u_i,v_j\rangle)_{i,j=1}^n}\), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of \({\alpha=\frac{m}{n}}\), where the previous vectors are sampled according to the Haar measure in the unit sphere of \({\mathbb R^m}\). In particular, we prove the existence of an \({\alpha_0 > 0}\) such that if \({\alpha\leq \alpha_0}\), \({\gamma}\) is nonlocal with probability tending to 1 as \({n\rightarrow \infty}\), while for \({\alpha > 2}\), \({\gamma}\) is local with probability tending to 1 as \({n\rightarrow \infty}\).  相似文献   

6.
We consider the unique continuation properties of asymptotically anti-de Sitter spacetimes by studying Klein–Gordon-type equations \({\Box_g \phi + \sigma \phi = {\mathcal{G}} ( \phi, \partial \phi )}\), \({\sigma \in {\mathbb{R}}}\), on a large class of such spacetimes. Our main result establishes that if \({\phi}\) vanishes to sufficiently high order (depending on \({\sigma}\)) on a sufficiently long time interval along the conformal boundary \({{\mathcal{I}}}\), then the solution necessarily vanishes in a neighborhood of \({{\mathcal{I}}}\). In particular, in the \({\sigma}\)-range where Dirichlet and Neumann conditions are possible on \({{\mathcal{I}}}\) for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well as a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this setting.  相似文献   

7.
Given a fusion category \({\mathcal C}\) and an indecomposable \({\mathcal C}\)-module category \({\mathcal M}\), the fusion category \({\mathcal C}^*_{_{{\mathcal M}}}\) of \({\mathcal C}\)-module endofunctors of \({\mathcal M}\) is called the (Morita) dual fusion category of \({\mathcal C}\) with respect to \({\mathcal M}\). We describe tensor functors between two arbitrary duals \({\mathcal C}^*_{_{{\mathcal M}}}\) and \({\mathcal D}^*_{\mathcal N}\) in terms of data associated to \({\mathcal C}\) and \({\mathcal D}\). We apply the results to G-equivariantizations of fusion categories and group-theoretical fusion categories. We describe the orbits of the action of the Brauer–Picard group on the set of module categories and we propose a categorification of the Rosenberg–Zelinsky sequence for fusion categories.  相似文献   

8.
We consider the weakly asymmetric simple exclusion process in the presence of a slow bond and starting from the invariant state, namely the Bernoulli product measure of parameter \({\rho \in (0,1)}\). The rate of passage of particles to the right (resp. left) is \({\frac{1}{2} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{1}{2} - \frac{a}{2n^{\gamma}}}\)) except at the bond of vertices \({\{-1,0\}}\) where the rate to the right (resp. left) is given by \({\frac{\alpha}{2n^\beta} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{\alpha}{2n^\beta}-\frac{a}{2n^{\gamma}}}\)). Above, \({\alpha > 0}\), \({\gamma \geq \beta \geq 0}\), \({a\geq 0}\). For \({\beta < 1}\), we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process defined on the Schwartz space if \({\gamma > \frac{1}{2}}\), while for \({\gamma = \frac{1}{2}}\) it is an energy solution of the stochastic Burgers equation. For \({\gamma \geq \beta =1}\), it is an Ornstein–Uhlenbeck process associated to the heat equation with Robin’s boundary conditions. For \({\gamma \geq \beta > 1}\), the limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat equation with Neumann’s boundary conditions.  相似文献   

9.
We give, as L grows to infinity, an explicit lower bound of order \({L^{\frac{n}{m}}}\) for the expected Betti numbers of the vanishing locus of a random linear combination of eigenvectors of P with eigenvalues below L. Here, P denotes an elliptic self-adjoint pseudo-differential operator of order \({m > 0}\), bounded from below and acting on the sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M equipped with some Lebesgue measure. In fact, for every closed hypersurface \({\Sigma}\) of \({\mathbb{R}^n}\), we prove that there exists a positive constant \({p_\Sigma}\) depending only on \({\Sigma}\), such that for every large enough L and every \({x \in M}\), a component diffeomorphic to \({\Sigma}\) appears with probability at least \({p_\Sigma}\) in the vanishing locus of a random section and in the ball of radius \({L^{-\frac{1}{m}}}\) centered at x. These results apply in particular to Laplace–Beltrami and Dirichlet-to-Neumann operators.  相似文献   

10.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

11.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

12.
In this article we investigate spectral properties of the coupling \({H + V_\lambda}\), where \({H = -i\alpha \cdot \nabla+m\beta}\) is the free Dirac operator in \({\mathbb{R}^3}\), \({m > 0}\) and \({V_\lambda}\) is an electrostatic shell potential (which depends on a parameter \({\lambda \in \mathbb{R}}\)) located on the boundary of a smooth domain in \({\mathbb{R}^3}\). Our main result is an isoperimetric-type inequality for the admissible range of \({\lambda}\)’s for which the coupling \({H + V_\lambda}\) generates pure point spectrum in \({(-m, m)}\). That the ball is the unique optimizer of this inequality is also shown. Regarding some ingredients of the proof, we make use of the Birman–Schwinger principle adapted to our setting in order to prove some monotonicity property of the admissible \({\lambda}\)’s, and we use this to relate the endpoints of the admissible range of \({\lambda}\)’s to the sharp constant of a quadratic form inequality, from which the isoperimetric-type inequality is derived.  相似文献   

13.
We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime \({\beta < \beta_c}\), and the mean-field lower bound \({\mathbb{P}_\beta[0\longleftrightarrow \infty ]\ge (\beta-\beta_c)/\beta}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that for any \({\beta < \beta_c}\), the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for \({\beta < \beta_c}\), and the mean-field lower bound \({\langle \sigma_0\rangle_\beta^+\ge \sqrt{(\beta^2-\beta_c^2)/\beta^2}}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for \({\beta < \beta_c}\).  相似文献   

14.
We study the long time dynamics of the Schrödinger equation on Zoll manifolds. We establish criteria under which the solutions of the Schrödinger equation can or cannot concentrate on a given closed geodesic. As an application, we derive some results on the set of semiclassical measures for eigenfunctions of Schrödinger operators: we prove that adding a potential \({V \in C^{\infty} (\mathbb{S}^{d})}\) to the Laplacian on the sphere results in the existence of geodesics \({\gamma}\) such that the uniform measure supported on \({\gamma}\) cannot be obtained as a weak-\({\star}\) accumulation point of the densities \({(|\psi_{n}|^{2} {vol}_{\mathbb{S}^d})}\) for any sequence of eigenfunctions \({(\psi_n)}\) of \({\Delta_{\mathbb{S}^{d}} - V}\). We also show that the same phenomenon occurs for the free Laplacian on certain Zoll surfaces.  相似文献   

15.
A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass m, finitely many excited states and an electric dipole moment, \({\vec{d}_0 = -\lambda_{0} \vec{d}}\), where \({\| d^{i}\| = 1, i = 1, 2, 3,}\) and \({\lambda_0}\) is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, \({-\vec{d}_0 \cdot \vec{E}}\), where \({\vec{E}}\) is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum \({\vec{p}}\) of the atom and of the coupling constant \({\lambda_0}\), provided \({\vert\vec{p} \vert < mc}\) and \({\vert \Im \vec{p} \vert}\) and \({\vert \lambda_{0} \vert}\) are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of ‘smooth Feshbach–Schur maps’ applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.  相似文献   

16.
The Lie algebra \({\mathcal{D}}\) of regular differential operators on the circle has a universal central extension \({\hat{\mathcal{D}}}\). The invariant subalgebra \({\hat{\mathcal{D}}^+}\) under an involution preserving the principal gradation was introduced by Kac, Wang, and Yan. The vacuum \({\hat{\mathcal{D}}^+}\)-module with central charge \({c \in \mathbb{C}}\), and its irreducible quotient \({\mathcal{V}_c}\), possess vertex algebra structures, and \({\mathcal{V}_c}\) has a nontrivial structure if and only if \({c \in \frac{1}{2}\mathbb{Z}}\). We show that for each integer \({n > 0}\), \({\mathcal{V}_{n/2}}\) and \({\mathcal{V}_{-n}}\) are \({\mathcal{W}}\)-algebras of types \({\mathcal{W}(2, 4,\dots,2n)}\) and \({\mathcal{W}(2, 4,\dots, 2n^2 + 4n)}\), respectively. These results are formal consequences of Weyl’s first and second fundamental theorems of invariant theory for the orthogonal group \({{\rm O}(n)}\) and the symplectic group \({{\rm Sp}(2n)}\), respectively. Based on Sergeev’s theorems on the invariant theory of \({{\rm Osp}(1, 2n)}\) we conjecture that \({\mathcal{V}_{-n+1/2}}\) is of type \({\mathcal{W}(2, 4,\dots, 4n^2 + 8n + 2)}\), and we prove this for \({n = 1}\). As an application, we show that invariant subalgebras of \({\beta\gamma}\)-systems and free fermion algebras under arbitrary reductive group actions are strongly finitely generated.  相似文献   

17.
We study the determinant \({\det(I-\gamma K_s), 0 < \gamma < 1}\) , of the integrable Fredholm operator K s acting on the interval (?1, 1) with kernel \({K_s(\lambda, \mu)= \frac{\sin s(\lambda - \mu)}{\pi (\lambda-\mu)}}\) . This determinant arises in the analysis of a log-gas of interacting particles in the bulk-scaling limit, at inverse temperature \({\beta=2}\) , in the presence of an external potential \({v=-\frac{1}{2}\ln(1-\gamma)}\) supported on an interval of length \({\frac{2s}{\pi}}\) . We evaluate, in particular, the double scaling limit of \({\det(I-\gamma K_s)}\) as \({s\rightarrow\infty}\) and \({\gamma\uparrow 1}\) , in the region \({0\leq\kappa=\frac{v}{s}=-\frac{1}{2s}\ln(1-\gamma)\leq 1-\delta}\) , for any fixed \({0 < \delta < 1}\) . This problem was first considered by Dyson (Chen Ning Yang: A Great Physicist of the Twentieth Century. International Press, Cambridge, pp. 131–146, 1995).  相似文献   

18.
In Rumanov (J Math Phys 56:013508, 2015), we found explicit Lax pairs for the soft edge of beta ensembles with even integer values of \({\beta}\). Using this general result, the case \({\beta = 6}\) is further considered here. This is the smallest even \({\beta}\), when the corresponding Lax pair and its relation to Painlevé II (PII) have not been known before, unlike cases \({\beta = 2}\) and 4. It turns out that again everything can be expressed in terms of the Hastings–McLeod solution of PII. In particular, a second order nonlinear ordinary differential equation (ODE) for the logarithmic derivative of Tracy–Widom distribution for \({\beta = 6}\) involving the PII function in the coefficients is found, which allows one to compute asymptotics for the distribution function. The ODE is a consequence of a linear system of three ODEs for which the local singularity analysis yields series solutions with exponents in the set 4/3, 1/3 and ?2/3.  相似文献   

19.
We consider random Schrödinger operators of the form \({\Delta+\xi}\), where \({\Delta}\) is the lattice Laplacian on \({\mathbb{Z}^{d}}\) and \({\xi}\) is an i.i.d. random field, and study the extreme order statistics of the Dirichlet eigenvalues for this operator restricted to large but finite subsets of \({\mathbb{Z}^{d}}\). We show that, for \({\xi}\) with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class, and the corresponding eigenfunctions are exponentially localized in regions where \({\xi}\) takes large, and properly arranged, values. The picture we prove is thus closely connected with the phenomenon of Anderson localization at the spectral edge. Notwithstanding, our approach is largely independent of existing methods for proofs of Anderson localization and it is based on studying individual eigenvalue/eigenfunction pairs and characterizing the regions where the leading eigenfunctions put most of their mass.  相似文献   

20.
We consider solutions of the scalar wave equation \({\Box_g\phi=0}\), without symmetry, on fixed subextremal Reissner-Nordström backgrounds \({(\mathcal{M}, g)}\) with nonvanishing charge. Previously, it has been shown that for ? arising from sufficiently regular data on a two ended Cauchy hypersurface, the solution and its derivatives decay suitably fast on the event horizon \({\mathcal{H}^+}\). Using this, we show here that ? is in fact uniformly bounded, \({|\phi| \leq C}\), in the black hole interior up to and including the bifurcate Cauchy horizon \({\mathcal{C}\mathcal{H}^+}\), to which ? in fact extends continuously. The proof depends on novel weighted energy estimates in the black hole interior which, in combination with commutation by angular momentum operators and application of Sobolev embedding, yield uniform pointwise estimates. In a forthcoming companion paper we will extend the result to subextremal Kerr backgrounds with nonvanishing rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号