首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.  相似文献   

2.
For any bipartite systems, a universal entanglement witness of rank-4 for pure states is obtained and a class of finite rank entanglement witnesses is constructed. In addition, a method of detecting entanglement of a state only by entries of its density matrix with respect to some product basis is obtained.  相似文献   

3.
Let ?? 12 be a bipartite density matrix. We prove lower bounds for the entanglement of formation Ef(?? 12) and the squashed entanglement Esq(?? 12) in terms of the conditional entropy S 12 ? S 1 and prove that these bounds are sharp by constructing a new class of states whose entanglements can be computed, and for which the bounds are saturated.  相似文献   

4.
Given a random quantum state of multiple distinguishable or indistinguishable particles, we provide an effective method, rooted in symplectic geometry, to compute the joint probability distribution of the eigenvalues of its one-body reduced density matrices. As a corollary, by taking the distribution’s support, which is a convex moment polytope, we recover a complete solution to the one-body quantum marginal problem. We obtain the probability distribution by reducing to the corresponding distribution of diagonal entries (i.e., to the quantitative version of a classical marginal problem), which is then determined algorithmically. This reduction applies more generally to symplectic geometry, relating invariant measures for the coadjoint action of a compact Lie group to their projections onto a Cartan subalgebra, and can also be quantized to provide an efficient algorithm for computing bounded height Kronecker and plethysm coefficients.  相似文献   

5.
 By applying the supersymmetric approach we rigorously prove smoothness of the averaged density of states for a three dimensional random band matrix ensemble, in the limit of infinite volume and fixed band width. We also prove that the resulting expression for the density of states coincides with the Wigner semicircle with a precision 1/W 2 , for W large but fixed. Received: 6 February 2002 / Accepted: 17 July 2002 Published online: 7 November 2002 RID="*" ID="*" Supported by NSF grant DMS 9729992  相似文献   

6.
We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered in a model problem by Djokic (2013). It explains the standard way to bound the expansion from a new point of view, and for some of the amplitudes provides new bounds, which avoid the use of Fourier transform, and are therefore superior to the standard bounds for models like the cold interacting Fermi gas.  相似文献   

7.
In this communication, two-mode nonlinear coherent states are reviewed and special cases are given.Starting from a three-level atom coupled to two modes of radiation with any form of nonlinearities of the two-modefields, we derive a Raman-coupled effective Hamiltonian by a unitary transformation, evaluated perturbatively in couplingconstants. We use the quantum entropy to measure the degree of entanglement in the time development of an effectivetwo-level atom interacting with two-mode nonlinear-coherent states. The results show that the nonlinearity effect yieldsthe superstructure of atomic Rabi oscillations and the effect of the Stark shift changes the quasiperiod of the field entropyevolution and entanglement between the particle and the field. A possible experimental test of a new effect is proposed.  相似文献   

8.
Using the monotonicity of relative entropy of composite quantum systems, we obtain new entropic inequalities for arbitrary density matrices of single qudit states. Examples of qutrit state inequalities and the “qubit portrait” bound for the distance between the qutrit states are considered in explicit form.  相似文献   

9.
This paper consists of two parts. First we set up a general scheme of local traps in a homogeneous deterministic quantum system. The current of particles caught by the trap is linked to the dynamical behaviour of the trap states. In this way, transport properties in a homogeneous system are related to spectral properties of a coherent dynamics. Next we apply the scheme to a system of Fermions in the one-particle approximation. We obtain in particular lower bounds for the dynamical entropy in terms of the current induced by the trap.  相似文献   

10.
11.
We strictly prove that some block diagonalizable two-qubit entangled state with six non-zero elements reaches its quantum relative entropy entanglement by a separable state having the same matrix structure. The entangled state comprises local filtering result state as a special case.  相似文献   

12.
In this paper, firstly, we derive some inequalities about the relative entropy for infinite-dimensional quantum systems. Secondly, we propose a new measurement based on the relative entropy of entanglement for infinite-dimensional systems with bounded mean energy, and give a lower bound on this entanglement measure. Lastly, we generalize this measure to multi-partite quantum systems.  相似文献   

13.
We study quantum analogs of classical situations, i.e. quantum states possessing some specific classical attribute(s). These states seem quite generally, to have the form of gaussian density matrices. Such states can always be parametrized as thermal squeezed states (TSS). We consider the following specific cases: (a) Two beams that are built from initial beams which passed through a beam splitter cannot, classically, be distinguished from (appropriately prepared) two independent beams that did not go through a splitter. The only quantum states possessing this classical attribute are TSS. (b) The classical Cramer's theorem was shown to have a quantum version (Hegerfeldt). Again, the states here are Gaussian density matrices. (c) The special case in the study of the quantum version of Cramer's theorem, viz. when the state obtained after partial tracing is a pure state, leads to the conclusion that all states involved are zero temperature limit TSS. The classical analog here are gaussians of zero width, i.e. all distributions are δ functions in phase space.  相似文献   

14.
We study spectra of Schrödinger operators on ? d . First we consider a pair of operators which differ by a compactly supported potential, as well as the corresponding semigroups. We prove almost exponential decay of the singular values μ n of the difference of the semigroups as n→∞ and deduce bounds on the spectral shift function of the pair of operators. Thereafter we consider alloy type random Schrödinger operators. The single site potential u is assumed to be non-negative and of compact support. The distributions of the random coupling constants are assumed to be Hölder continuous. Based on the estimates for the spectral shift function, we prove a Wegner estimate which implies Hölder continuity of the integrated density of states.  相似文献   

15.
We are interested in the properties and relations of entanglement measures. Especially, we focus on the squashed entanglement and relative entropy of entanglement, as well as their analogues and variants. Our first result is a monogamy-like inequality involving the relative entropy of entanglement and its one-way LOCC variant. The proof is accomplished by exploring the properties of relative entropy in the context of hypothesis testing via one-way LOCC operations, and by making use of an argument resembling that by Piani on the faithfulness of regularized relative entropy of entanglement. Following this, we obtain a commensurate and faithful lower bound for squashed entanglement, in the form of one-way LOCC relative entropy of entanglement. This gives a strengthening to the strong subadditivity of von Neumann entropy. Our result improves the trace-distance-type bound derived in Brandão et al. (Commun Math Phys, 306:805–830, 2011), where faithfulness of squashed entanglement was first proved. Applying Pinsker’s inequality, we are able to recover the trace-distance-type bound, even with slightly better constant factor. However, the main improvement is that our new lower bound can be much larger than the old one and it is almost a genuine entanglement measure. We evaluate exactly the relative entropy of entanglement under various restricted measurement classes, for maximally entangled states. Then, by proving asymptotic continuity, we extend the exact evaluation to their regularized versions for all pure states. Finally, we consider comparisons and separations between some important entanglement measures and obtain several new results on these, too.  相似文献   

16.
We develop in this paper the principles of an associative algebraic approach to bulk logarithmic conformal field theories (LCFTs). We concentrate on the closed \({\mathfrak{gl}(1|1)}\) spin-chain and its continuum limit—the \({c=-2}\) symplectic fermions theory—and rely on two technical companion papers, Gainutdinov et al. (Nucl Phys B 871:245–288, 2013) and Gainutdinov et al. (Nucl Phys B 871:289–329, 2013). Our main result is that the algebra of local Hamiltonians, the Jones–Temperley–Lieb algebra JTL N , goes over in the continuum limit to a bigger algebra than \({\boldsymbol{\mathcal{V}}}\), the product of the left and right Virasoro algebras. This algebra, \({\mathcal{S}}\)—which we call interchiral, mixes the left and right moving sectors, and is generated, in the symplectic fermions case, by the additional field \({S(z,\bar{z})\equiv S_{\alpha\beta} \psi^\alpha(z)\bar{\psi}^\beta(\bar{z})}\), with a symmetric form \({S_{\alpha\beta}}\) and conformal weights (1,1). We discuss in detail how the space of states of the LCFT (technically, a Krein space) decomposes onto representations of this algebra, and how this decomposition is related with properties of the finite spin-chain. We show that there is a complete correspondence between algebraic properties of finite periodic spin chains and the continuum limit. An important technical aspect of our analysis involves the fundamental new observation that the action of JTL N in the \({\mathfrak{gl}(1|1)}\) spin chain is in fact isomorphic to an enveloping algebra of a certain Lie algebra, itself a non semi-simple version of \({\mathfrak{sp}_{N-2}}\). The semi-simple part of JTL N is represented by \({U \mathfrak{sp}_{N-2}}\), providing a beautiful example of a classical Howe duality, for which we have a non semi-simple version in the full JTL N image represented in the spin-chain. On the continuum side, simple modules over \({\mathcal{S}}\) are identified with “fundamental” representations of \({\mathfrak{sp}_\infty}\).  相似文献   

17.
In this paper, we have given the spin states of two-photon, which are expressed by the quadratic combination of two single-photon spin states, and given all entanglement states of two-photon from the spin states of two-photon. The new expression of two-photon entanglement states should be used in quantum computation and quantum communication.  相似文献   

18.
19.
In chaotic entanglement, pairs of interacting classically-chaotic systems are induced into a state of mutual stabilization that can be maintained without external controls and that exhibits several properties consistent with quantum entanglement. In such a state, the chaotic behavior of each system is stabilized onto one of the system’s many unstable periodic orbits (generally located densely on the associated attractor), and the ensuing periodicity of each system is sustained by the symbolic dynamics of its partner system, and vice versa. Notably, chaotic entanglement is an entropy-reversing event: the entropy of each member of an entangled pair decreases to zero when each system collapses onto a given period orbit. In this paper, we discuss the role that entropy plays in chaotic entanglement. We also describe the geometry that arises when pairs of entangled chaotic systems organize into coherent structures that range in complexity from simple tripartite lattices to more involved patterns. We conclude with a discussion of future research directions.  相似文献   

20.
Separability Criterion for Density Matrices   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号