首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ethanol clusters are generated in a continuous He seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method clusters of the type Na(C(2)H(5)OH)(n) are formed and characterized by determining size selectively their ionization potentials (IPs) for n = 2-40 in photoionization experiments. A continuous decrease to 3.1 eV is found from n = 2 to 6 and a constant value of 3.07 ± 0.06 eV for n = 10-40. This IP evolution is similar to the sodium-water and the sodium-methanol system. Quantum chemical calculations (B3LYP and MP2) of the IPs indicate adiabatic contributions to the photoionization process for the cluster sizes n = 4 and 5, which is similar to the sodium-methanol case. The results of the extrapolated IPs and the vertical binding energies (VEBs) of cluster anions are compared with the recently reported VEBs of solvated electrons in liquid water, methanol, and ethanol solutions in the range of 3.1-3.4 eV. The new results imply that the extrapolated VBEs of solvated electrons in anionic clusters match the VBE in liquid water, while they are about 0.5 eV too low for methanol. The influence of the presence of counterions on these findings is discussed.  相似文献   

2.
Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.  相似文献   

3.
A tabletop soft x-ray laser is applied for the first time as a high energy photon source for chemical dynamics experiments in the study of water, methanol, and ammonia clusters through time of flight mass spectroscopy. The 26.5 eV/photon laser (pulse time duration of approximately 1 ns) is employed as a single photon ionization source for the detection of these clusters. Only a small fraction of the photon energy is deposited in the cluster for metastable dissociation of cluster ions, and most of it is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the cluster mass spectra. Unprotonated ammonia clusters are observed in the protonated cluster ion size range 2< or =n< or =22. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated to be (0.6-2.7)x10(4), (3.6-6.0)x10(3), and (0.8-2.0)x10(4) s(-1) for the protonated water (9< or =n< or =24), methanol (5< or =n< or =10), and ammonia (5< or =n< or =18) clusters, respectively. The temperatures of the neutral clusters are estimated to be between 40 and 200 K for water clusters (10< or =n< or =21), and 50-100 K for methanol clusters (6< or =n< or =10). Products with losses of up to five H atoms are observed in the mass spectrum of the neutral ammonia dimer. Large ammonia clusters (NH(3))(n) (n>3) do not lose more than three H atoms in the photoionization/photodissociation process. For all three cluster systems studied, single photon ionization with a 26.5 eV photon yields near threshold ionization. The temperature of these three cluster systems increases with increasing cluster size over the above-indicated ranges.  相似文献   

4.
We have measured the photoelectron-spectra of I? (H2O)n clusters in the size range n=1–60. We have found that the first six water molecules form a solvation layer with an average 0.35 eV electrostatic stabilization of the anion. At larger cluster sizes the electrostatic stabilization of water does not fit a continuous dielectric solvent. The most stable structures of the clusters consist of internally solvated anions. In the size range n=34–40 we have found evidence for existence of cluster structures with surface solvated anions.  相似文献   

5.
Multiply charged ammonia cluster ions are produced by adiabatic nozzle expansion and subsequent ionization by electron impact. They are analyzed in a double focussing sector field mass spectrometer (reversed geometry). Doubly charged clusters are only detected above a critical size of 51 and triply charged clusters above 121. Some of these multiply charged ions decay via metastable dissociation processes in the experimental time window accessible. Doubly charged ammonia clusters with sizes ofn≧51 lose one neutral monomer or, roughly ten times less probable, two neutral monomers. Conversely, triply charged ammonia clusters with sizes 110≦n≦120 show an extremely asymmetric Coulomb dissociation resulting in doubly charged cluster ions of about 90% of the initial mass  相似文献   

6.
Time-resolved observations of the fast electron transfer from an electron donor to metal ions adsorbed on metal clusters in solution have shown that a critical size of the cluster is required to make it capable of accepting electrons. The threshold is attributed to a size dependent redox potential of the cluster, increasing with the nuclearity (in contrast with the ionization potential in the gas phase which decreases when n increases): it corresponds to the nuclearity for which the cluster redox potential becomes more positive than the potential of the electron donor acting as a monitor.New data of redox potentials (or IP) of Agn clusters (hydroquinone as monitor) and Cun cluster (sulfonatopropylviologen anion as monitor) are derived. The influence of n and of the solvation or the ligand is discussed.  相似文献   

7.
The 4s and 5s Rydberg excited states of NaAr(n)* clusters are investigated using a pseudopotential quantum-classical method. While NaAr(n) clusters in their ground state are known to be weakly bound van der Waals complexes with Na lying at the surface of the argon cluster, isomers in 4s or 5s electronically excited states of small NaAr(n)* clusters (n< or =10) are found to be stable versus dissociation. The relationship between electronic excitation and cluster geometry is analyzed as a function of cluster size. For both 4s and 5s states, the stable exciplex isomers essentially appear as sodium-centered structures with similar topologies, converging towards those of the related NaAr(n)+ positive ions when the excitation level is increased. This is consistent with a Rydberg-type picture for the electronically excited cluster, described by a central sodium ion solvated by an argon shell, and an outer diffuse electron orbiting around this NaAr(n)+ cluster core.  相似文献   

8.
Anionic tetrahydrofuran clusters (THF)(n) (-) (1≤n≤100) are studied with photoelectron imaging as gas-phase precursors for electrons solvated in THF. Photoelectron spectra of clusters up to n=5 show two peaks, one of which is attributed to a solvated open chain radical anion and the other to the closed THF ring. At n=6, the spectra change shape abruptly, which become more characteristic of (THF)(n) (-) clusters containing solvated electrons. From n=6-100, the vertical detachment energies (VDEs) of these solvated electron clusters increase from 1.96 to 2.71 eV, scaling linearly with n(-1/3). For fully deuterated (THF-d8)(n) (-) clusters, the apparent transition to a solvated electron cluster is delayed to n=11. Extrapolation of the VDEs to infinite cluster size yields a value of 3.10 eV for the bulk photoelectric threshold. The relatively large VDEs at onset and small stabilization with increasing cluster size compared to other solvated electron clusters may reflect the tendency of the bulk solvent to form preexisting voids that can readily solvate a free electron.  相似文献   

9.
Methanol clusters are generated in a continuous He-seeded supersonic expansion and doped with sodium atoms in a pick-up cell. By this method, clusters of the type Na(CH(3)OH)(n) are formed and subsequently photoionized by applying a tunable dye-laser system. The microsolvation process of the Na 3s electron is studied by determining the ionization potentials (IPs) of these clusters size-selectively for n = 2-40. A decrease is found from n = 2 to 6 and a constant value of 3.19 +/- 0.07 eV for n = 6-40. The experimentally-determined ionization potentials are compared with ionization potentials derived from quantum-chemical calculations, assuming limiting vertical and adiabatic processes. In the first case, energy differences are calculated between the neutral and the ionized cationic clusters of the same geometry. In the second case, the ionized clusters are used in their optimized relaxed geometry. These energy differences and relative stabilities of isomeric clusters vary significantly with the applied quantum-chemical method (B3LYP or MP2). The comparison with the experiment for n = 2-7 reveals strong variations of the ionization potential with the cluster structure indicating that structural diversity and non-vertical pathways give significant signal contributions at the threshold. Based on these findings, a possible explanation for the remarkable difference in IP evolutions of methanol or water and ammonia is presented: for methanol and water a rather localized surface or semi-internal Na 3s electron is excited to either high Rydberg or more localized states below the vertical ionization threshold. This excitation is followed by a local structural relaxation that couples to an autoionization process. For small clusters with n < 6 for methanol and n < 4 for water the addition of solvent molecules leads to larger solvent-metal-ion interaction energies, which consequently lead to lower ionization thresholds. For n = 6 (methanol) and n = 4 (water) this effect comes to a halt, which may be connected with the completion of the first cationic solvation shell limiting the release of local relaxation energy. For Na(NH(3))(n), a largely delocalized and internal electron is excited to autoionizing electronic states, a process that is no longer local and consequently may depend on cluster size up to very large n.  相似文献   

10.
Alkali metal ammonia clusters, in their cationic, neutral, and anionic form, are molecular models for the alkali-ammonia solutions, which have rich variation of phases with the solvated electrons playing an important role. With two s electrons, the Na(-)(NH(3))(n) and Li(-)(NH(3))(n) clusters are unique in that they capture the important aspect of the coupling between two solvated electrons. By first principles calculations, we demonstrate that the two electrons are detached from the metal by n = 10, which produces a cluster with a solvated electron pair in the vicinity of a solvated alkali cation. The coupling of the two electrons leads to either the singlet or triplet state, both of which are stable. They are also quite distinct from the hydrated anionic clusters Na(-)(H(2)O)(n) and Li(-)(H(2)O)(n), in that the solvated electrons are delocalized and widely distributed among the solvent ammonia molecules. The Na(-)(NH(3))(n) and Li(-)(NH(3))(n) series, therefore, provide another interesting type of molecular model for the investigation of solvated electron pairs.  相似文献   

11.
We have used photoionization efficiency spectroscopy to determine the ionization potentials (IP) of the tantalum-carbide clusters, Ta3Cn (n = 1-3) and Ta4Cn (n = 1-4). The ionization potentials follow an overall reduction as the number of carbon atoms increases; however, the trend is not steady as expected from a simple electrostatic argument. Instead, an oscillatory behavior is observed such that clusters with an odd number of carbon atoms have higher IPs and clusters with an even number of carbon atoms have lower IPs, with the Ta4C4 cluster exhibiting the lowest IP. Excellent agreement is found with relative IPs calculated using density functional theory for the lowest energy structures, which are consistent with the development of a 2 x 2 x 2 face-centered nanocrystal. This work shows that IPs may be used as a reliable validation for the geometries of metal-carbide clusters calculated by theory. The variation in IP can also be interpreted qualitatively with application of a simple model based upon isolobal frontier orbitals.  相似文献   

12.
van der Waals cluster (SO2)n is investigated by using single photon ionization of a 26.5 eV soft x-ray laser. During the ionization process, neutral clusters suffer a small fragmentation because almost all energy is taken away by the photoelectron and a small part of the photon energy is deposited into the (SO2)n cluster. The distribution of (SO2)n clusters decreases roughly exponentially with increasing cluster size. The photoionization dissociation fraction of I[(SO2)(n-1)SO+] / I[(SO2)n+] decreases with increasing cluster size due to the formation of cluster. The metastable dissociation rate constants of (SO2)n+ are measured in the range of (0.6-1.5) x 10(4) s(-1) for cluster sizes 5< or =n< or =16. Mixed SO2-H2O clusters are studied at different experimental conditions. At the condition of high SO2 concentration (20% SO2 partial pressure), (SO2)n+ cluster ions dominate the mass spectrum, and the unprotonated mixed cluster ions (SO2)nH2O+ (1< or =n< or =5) are observed. At the condition of low SO2 concentration (5% SO2 partial pressure) (H2O)nH+ cluster ions are the dominant signals, and protonated cluster ions (SO2)(H2O)nH+ are observed. The mixed clusters, containing only one SO2 or H2O molecule, SO2(H2O)nH+ and (SO2)nH2O+ are observed, respectively.  相似文献   

13.
We have investigated the structure and electronic properties of cesium clusters following all electron ab initio theoretical methods based on configuration interaction, second-order Moller-Plesset (MP2) perturbation theory, and density-functional theory. Becke's three-parameter nonlocal hybrid exchange-correlation functional (B3LYP) is found to perform best on the present systems with a split valence 3-21G basis function. We have calculated the optimized geometries of neutral and singly charged cesium clusters having up to ten atoms, their binding energy per atom, ionization potentials (IPs), and adiabatic electron affinity (EA). Geometry optimizations for all the clusters are carried out without imposing any symmetry restriction. The neutral clusters having up to six atoms prefer planar structure and three-dimensional structure is preferred only when the number of atoms in a cluster is more than six. There is a good agreement between the present theoretical and reported experimental IP values for the neutral clusters with cluster size n相似文献   

14.
A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay (µs range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH3 monomer from protonated clusters (NH3) n ? 2NH 4 + . Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up ton=10.  相似文献   

15.
用直射式和反射式飞行时间质谱研究了氨分子团簇体系在 355 nm激光下的多光子电离,得到一系列的质子化团簇离子 (NH3)nH+,同时还观察到超价氨团簇离子 (NH3)n H2+。在反射式飞行时间质谱研究中观测到质子化氨团簇离子在自由飞行过程中的解离现象,表明在该实验条件下生成的质子化氨团簇离子是一些亚稳态团簇离子。对子离子产率的分析,得到质子化团簇离子解离速率常数,从而可以估计亚稳态团簇离子的寿命。团簇尺寸从 n=3增大到 20,其寿命从 21 ms减小到 120 μs,大约小了两个数量级。解离速率在 n=5到 6有一个阶跃式上升,这是由于 5个氨组成的质子化团簇离子(NH3)4NH4+ 的结构相对比较稳定。  相似文献   

16.
Ionization potentials (IPs) of [(CH(3))(2)NH](m)(NH(3))(n)-H hypervalent radical clusters produced by an ArF excimer laser photolysis of dimethylamine (DMA)-ammonia mixed clusters are determined by the photoionization threshold measurements. The IPs of the DMA(1)(NH(3))(n)-H hypervalent radicals decrease rapidly with the number of ammonia up to n=4, and then its decrease rate becomes much slower for n ≥ 5. This trend is very similar to that found for NH(4)(NH(3))(n) clusters. The calculated results on the stable structures and IP as well as the observed IP for DMA(1)(NH(3))(n)-H indicate that the hydrogen atom-localized site is the NH(3) moiety for n=1, while the doubly coordinated DMA-H is favorable for n=2-4, and then 4-fold-coordinated NH(4) is again more stable for n ≥ 5. These changes are consistent with the results on the femtosecond pump-probe experiments of DMA(n)-H clusters. Switching of the hydrogen atom-localized site is ascribed to the instability of DMA-H against a hydrogen-atom dissociation.  相似文献   

17.
The microsolvation of the CH(3)OH(2) hypervalent radical in methanol clusters has been investigated by density functional theory. It is shown that the CH(3)OH(2) radical spontaneously decomposes within methanol clusters into protonated methanol and a localized solvated electron cloud. The geometric and electronic structures of these clusters as well as their vibrational frequencies have been characterized. Resonance Raman intensities, associated with the s --> p transition of the unpaired electron, have been estimated for CH(3)OH(2)M(n) (M = CH(3)OH, n = 1-3) clusters. It is shown that with increasing cluster size the simulated spectra converge toward the resonance Raman spectrum of the solvated electron in methanol measured recently by Tauber and Mathies (J. Am. Chem. Soc. 2004, 126, 3414). The results suggest that CH(3)OH(2)M(n) clusters are useful finite-size model systems for the computational investigation of the spectroscopic properties of the solvated electron in liquid methanol.  相似文献   

18.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

19.
Electronic relaxation dynamics of water cluster anions   总被引:1,自引:0,他引:1  
The electronic relaxation dynamics of water cluster anions, (H(2)O)(n)(-), have been studied with time-resolved photoelectron imaging. In this investigation, the excess electron was excited through the p<--s transition with an ultrafast laser pulse, with subsequent electronic evolution monitored by photodetachment. All excited-state lifetimes exhibit a significant isotope effect (tau(D)2(O)/tau(H)2(O) approximately 2). Additionally, marked dynamical differences are found for two classes of water cluster anions, isomers I and II, previously assigned as clusters with internally solvated and surface-bound electrons, respectively. Isomer I clusters with n > or = 25 decay exclusively by internal conversion, with relaxation times that extrapolate linearly with 1/n toward an internal conversion lifetime of 50 fs in bulk water. Smaller isomer I clusters (13 < or = n < or = 25) decay through a combination of excited-state autodetachment and internal conversion. The relaxation of isomer II clusters shows no significant size dependence over the range of n = 60-100, with autodetachment an important decay channel following excitation of these clusters. Photoelectron angular distributions (PADs) were measured for isomer I and isomer II clusters. The large differences in dynamical trends, relaxation mechanisms, and PADs between large isomer I and isomer II clusters are consistent with their assignment to very different electron binding motifs.  相似文献   

20.
Room temperature CO adsorption on isolated gold cluster cations is studied over a wide size range (Au(n) (+),126), with notable exceptions at n=30, 31 and 48, 49 which manifest local binding energy maxima. For the smallest sizes (3相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号