首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Interatomic Coulombic decay (ICD) is a radiationless decay mechanism occurring via electron emission in an inner-valence ionized weakly bound cluster. The ICD has been studied for the neon clusters Nen (n=2,...,5). The decay widths of the neon clusters are calculated using ab initio Green's function method. The non-Dyson version of Green's function is employed. This propagator is analytically continued into the complex energy plane with the aid of a complex absorbing potential, and the decaying states are found as resonance states in this plane.  相似文献   

2.
An earlier proposed propagator method for the treatment of molecular ionization is tested in first applications. The method referred to as the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator represents a computationally promising alternative to the existing Dyson ADC(3) method. The advantage of the nD-ADC(3) scheme is that the (N+/-1)-electronic parts of the one-particle Green's function are decoupled from each other and the corresponding equations can be solved separately. For a test of the method the nD-ADC(3) results for the vertical ionization transitions in C(2)H(4), CO, CS, F(2), H(2)CO, H(2)O, HF, N(2), and Ne are compared with available experimental and theoretical data including results of full configuration interaction (FCI) and coupled cluster computations. The mean error of the nD-ADC(3) ionization energies relative to the experimental and FCI results is about 0.2 eV. The nD-ADC(3) method, scaling as n(5) with the number of orbitals, requires the solution of a relatively simple Hermitian eigenvalue problem. The method renders access to ground-state properties such as dipole moments. Moreover, also one-electron properties of (N+/-1) electron states can now be studied as a consequence of a specific intermediate-state representation (ISR) formulation of the nD-ADC approach. Corresponding second-order ISR equations are presented.  相似文献   

3.
In this paper we present the third-order extension of the four-component one-particle propagator method in the non-Dyson version of the algebraic diagrammatic construction (ADC) for the calculation of valence ionization energies. Relativistic and electron correlation effects are incorporated consistently by starting from the Dirac-Hamiltonian. The ADC equations derived from the Feynman diagrams can hereby be used in their spin-orbital form and need not be transformed to the spin-free version as required for a nonrelativistic treatment. For the calculation of the constant self-energy contribution the Dyson expansion method was implemented being superior to a perturbational treatment of sigma(infinity). The Dirac-Hartree-Fock- (DHF-) ADC(3) was applied to the calculation of valence photoionization spectra of the noble gas atoms, carbon monoxide and ICN now also reproducing spin-orbit features in the spectrum. Comparison with DHF-ADC(2), nonrelativistic ADC(3), and experimental data was made in order to demonstrate the characteristics and performance of the method.  相似文献   

4.
5.
In this work we propose an extended propagator theory for electrons and other types of quantum particles. This new approach has been implemented in the LOWDIN package and applied to sample calculations of atomic and small molecular systems to determine its accuracy and performance. As a first application of the method we have studied the nuclear quantum effects on electron ionization energies. We have observed that ionization energies of atoms are similar to those obtained with the electron propagator approach. However, for molecular systems containing hydrogen atoms there are improvements in the quality of the results with the inclusion of nuclear quantum effects. An energy term analysis has allowed us to conclude that nuclear quantum effects are important for zero order energies whereas propagator results correct the electron and electron-nuclear correlation terms. Results presented for a series of n-alkanes have revealed the potential of this method for the accurate calculation of ionization energies of a wide variety of molecular systems containing hydrogen nuclei. The proposed methodology will also be applicable to exotic molecular systems containing positrons or muons.  相似文献   

6.
A new approach to calculate the potential acting on an electron in a molecule(PAEM) has been established for drawing the molecular face(MF) of a macromolecule, according to the classic point charge model and the atom-bond electronegativity equalization method(ABEEMσπ) for one electron in a molecule. We introduced a dynamic charge distribution from the view of a local electron movement in a molecule based on the new approach, and as further direct evidence, we calculated some physical quantities using the original ab initio method and the new method to verify the accuracy of the method, such as the boundary distance(BD), molecular face surface area(MFSA) and molecular reactivities indicated by the MFs for a variety of organic molecules. All the results by the new method are in agreement with the results by ab initio method.  相似文献   

7.
The new approach to approximation of polarization propagator (PP) for electronic states of atoms and molecules with reference state wave function (RSWF) constructed on the base of a multidimensional model space is presented. This approach exploiting the apparatus of the quasidegenerate perturbation theory (QDPT) is realized in the zeroth QDPT order and through the first one. The original complete system of excitation operators introduced in the approach is consistent with the RSWF by the perturbation order. This factor in conjunction with the flexibility of the RSWF creates the capabilities of balanced accounting of correlation and quasidegeneracy effects at different locations of nuclei in a molecule and for all the states concerned. In this way, the transition characteristics in electronic shells of molecules in a wide area of nuclear geometry parameters may be appropriately evaluated. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

8.
A hole charge created in a molecule, for instance, by ionization, can migrate through the system solely driven by electron correlation. The migration of a hole charge following ionization in N-methyl acetamide (a molecular system containing a peptide bond) is investigated. The initial hole charge is localized at one specific site of the molecule. Ab initio calculations show that nearly 90% of the hole migrates to a remote site of the molecule in 4.2 fs. This migration of charge is highly efficient and ultrafast. The underlying mechanism for this migration of a hole charge is identified and compared with a simple model.  相似文献   

9.
Ab initio electron propagator methodology may be applied to the calculation of electrical current through a molecular wire. A new theoretical approach is developed for the calculation of the retarded and advanced Green functions in terms of the electron propagator matrix for the bridge molecule. The calculation of the current requires integration in a complex half plane for a trace that involves terminal and Green's-function matrices. Because the Green's-function matrices have complex poles represented by matrices, a special scheme is developed to express these "matrix poles" in terms of ordinary poles. An expression for the current is derived for a terminal matrix of arbitrary rank. For a single terminal orbital, the analytical expression for the current is given in terms of pole strengths, poles, and terminal matrix elements of the electron propagator. It is shown that Dyson orbitals with high pole strengths and overlaps with terminal orbitals are most responsible for the conduction of electrical current.  相似文献   

10.
11.
Facile electron transfer in molecules with one dimension greatly exceeding the other two is essential in the development of new molecular electronic devices as these molecules can serve as so-called molecular wires. In this communication the electrochemical behavior of a series of molecules with multiple extended viologen moieties has been studied. We show that the electron transfer in the shortest wire is due to reduction of two identical communicating pyridinium moieties leading to a full charge delocalization, whereas the electron transfer in molecules with n≥ 2 is due to reduction of initially non-communicating centers. This was confirmed by digital simulation of cyclic voltammograms. All studied molecules accept reversibly at least four and up to ten electrons without any long-term chemical changes, which is a prerequisite for their future application. Chemical stability of these molecules after multiple electron transfer was confirmed by in situ UV-Vis spectroelectrochemical detection.  相似文献   

12.
Both electron propagator theory and density-functional theory provide conceptually useful information about chemical reactivity and, most especially, charge transfer. This paper elucidates the qualitative and quantitative links between the two theories, with emphasis on how the reactivity indicators of conceptual density-functional theory can be derived from electron propagator theory. Electron propagator theory could be used to compute reactivity indices with high accuracy at reasonable computational cost.  相似文献   

13.
We present an alternative approach to determine "density-dependent property"-derived charges for molecules in the condensed phase. In the case of a solution, it is essential to take into consideration the electron polarization of molecules in the active site of this system. The solute and solvent molecules in this site have to be described by a quantum mechanical technique and the others are allowed to be treated by a molecular mechanical method (QM/MM scheme). For calculations based on this scheme, using the forces and interaction energy as density-dependent property our charges from interaction energy and forces (CHIEF) approach can provide the atom-centered charges on the solute atoms. These charges reproduce well the electrostatic potentials around the solvent molecules and present properly the picture of the electron density of the QM subsystem in the solution system. Thus, the CHIEF charges can be considered as the atomic charges under the conditions of the QM/MM simulation, and then enable one to analyze electrostatic interactions between atoms in the QM and MM regions. This approach would give a view of the QM nuclei and electrons different from the conventional methods.  相似文献   

14.
15.
16.
The quantum mechanical current density induced in a molecule by an external magnetic field is invariant to translations of the coordinate system. This fundamental symmetry is exploited to formally annihilate the diamagnetic contribution to the current density via the approach of "continuous transformation of the origin of the current density-diamagnetic zero" (CTOCD-DZ). The relationships obtained by this method for the magnetic shielding at the nuclei are intrinsically independent of the origin of the coordinate system for any approximate computational scheme relying on the algebraic approximation. The authors report for the first time an extended series of origin-independent estimates of nuclear magnetic shielding constants using the CTOCD-DZ approach at the level of density functional theory (DFT) with four different types of functionals and unrelaxed coupled cluster singles and doubles linear response (CCSD-LR) theory. The results obtained indicate that in the case of DFT the procedure employed is competitive with currently adopted computational methods allowing for basis sets of gauge-including atomic orbitals, whereas larger differences between CTOCD-DZ and common origin CCSD-LR results are observed due to the incomplete fulfillment of hypervirial relations in standard CCSD-LR theory. It was found furthermore that the unrelaxed CCSD-LR calculations predict larger correlation corrections for the shielding constants of almost all nonhydrogen atoms in their set of molecules than the usual relaxed energy derivative CCSD calculations. Finally the results confirm the excellent performance of Keal and Tozer's third functional, in particular, for the multiply bonded systems with a lot of electron correlation, but find also that the simple local density functional gives even better results for the few singly bonded molecules in their study where correlation effects are small.  相似文献   

17.
18.
At present, there are two widely used approaches for computing molecular hydration and electrostatic effects within the continuum approximation: the finite difference method, in which the electric potential is directly computed on a cubic grid, and the induced polarization charge or boundary element method, in which an induced charge distribution is first computed on the molecular surface and in which solvation effects are then calculated by reference to the reaction field arising from this induced surface charge. While the induced surface charge approach has a number of advantages over finite differences, especially in the computation of hydration forces and solvent stabilization, the applications of this technique have been largely restricted to small molecules. This is primarily due to the very large system of equations that results when the surface of a macromolecule is discretized into elements small enough to ensure an acceptable level of numerical accuracy within the continuum model. This article describes a new algorithm for implementing boundary element calculations within the continuum model. The essence of our approach is only to compute explicitly those interactions between surface elements that are relatively close together and to approximate long-range interactions by grid-based multipole expansion. The resulting system of equations has a relatively sparse coefficient matrix and requires disk storage that increases linearly with molecular surface area. The technique has numerous applications in the analysis of solvation effects in large molecules, especially in the area of conformational analysis, where it is critical to accurately estimate the global hydration energy for the entire structure. © 1996 by John Wiley & Sons, Inc.  相似文献   

19.
Describing strong (also known as static) correlation caused by degenerate or nearly degenerate orbitals near the Fermi level remains a theoretical challenge, particularly in molecular systems. Constrained-pairing mean-field theory has been quite successful, capturing the effects of static correlation in bond formation and breaking in closed-shell molecular systems by using singlet electron entanglement to model static correlation at mean-field computational cost. This work extends the previous formalism to include triplet pairing. Additionally, a spin orbital extension of the "odd-electron" formalism is presented as a method for understanding electron entanglement in molecules.  相似文献   

20.
For the purpose of investigation of the electronic structures of functionalized pyrroles with potential biological activity the electronic structures and ionization spectra of S-cis-(Z)-2-(2-formylethenyl)pyrrole (FP) were calculated by the propagator quantum chemical method. The calculations were performed using the third-order algebraic diagrammatic construction method (ADC(3)) for one-particle Green´s function (electronic propagator) and the 6–31G** basis set. Going from FP (possessing the intramolecular hydrogen bond H?O) to its conformation FPR (without H?O bonding), the O1s-ionization energy and the ionization energy of the σ-type lone electron pair orbital of the O atom decrease by ~0.2 eV, which is a consequence of stopping the electron density transfer from the O atom. A strong electron density transfer through the hydrogen bond from the O atom to the NH group occurs in the nitrogen core level ionization spectrum as evidenced by a lower N1s-ionization energy of FP (by ~0.7 eV ) compared to that of FPR. The valence shell ionization spectra of FP and FPR calculated using the ADC(3) method are characterized by a high density of the satellite states. The results obtained indicate that the electronic structures of the compounds of the considered class are characterized by pronounced effects of electron correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号