首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new high quality three-dimensional potential energy surface for the Ne-CO van der Waals complex is developed using the CCSD(T) method and avqz∕avqz+33221 basis set. The ab initio calculation is performed in a total of 1365 configurations with supermolecule method. There is a single global minimum located in a nearly T-shaped geometry. The global minimum energy is -49.4090 cm(-1) at R(e)=6.40a(0) and θ(e)=82.5(°) for V(00). Using the three-dimensional potential energy surface, we have calculated bound rovibrational energy levels up to J = 10 including the Coriolis coupling terms. Compared with the experimental transition frequencies, the theoretical results are in good agreement with the experimental results.  相似文献   

2.
The CN-Ar van der Waals complex has been observed using the B (2)Sigma(+)-X (2)Sigma(+) and A (2)Pi-X (2)Sigma(+) electronic transitions. The spectra yield a dissociation energy of D(0")=102+/-2 cm(-1) and a zero-point rotational constant of B(0")=0.067+/-0.005 cm(-1) for CN(X)-Ar. The dissociation energy for CN(A)-Ar was found to be D(0')=125+/-2 cm(-1). Transitions to vibrationally excited levels of CN(B)-Ar dominated the B-X spectrum, indicative of substantial differences in the intermolecular potential energy surfaces (PESs) for the X and B states. Ab initio PESs were calculated for the X and B states. These were used to predict rovibrational energy levels and van der Waals bond energies (D(0")=115 and D(0')=183 cm(-1)). The results for the X state were in reasonably good agreement with the experimental data. Spectral simulations based on the ab initio potentials yielded qualitative insights concerning the B-X spectrum, but the level of agreement was not sufficient to permit vibronic assignment. Electronic predissociation was observed for both CN(A)-Ar and CN(B)-Ar. The process leading to the production of CN(A,nu=8,9) fragments from the predissociation of CN(B,nu=0)-Ar was characterized using time-resolved fluorescence and optical-optical double resonance measurements.  相似文献   

3.
Microwave rotational spectra of eleven isotopomers of the Ne(3)-NH(3) van der Waals tetramer were measured using a pulsed jet, Balle-Flygare type Fourier transform microwave spectrometer. The transitions measured fall between 4 and 17 GHz and correspond to the ground internal rotor state of the weakly bound complex. The (20)Ne(3)- and (22)Ne(3)-containing species are symmetric top molecules while the mixed (20)Ne(2)(22)Ne- and (20)Ne(22)Ne(2)-isotopomers are asymmetric tops. For each of the deuterium-containing isotopomers, a tunneling splitting was observed due to the inversion of NH(3) within the tetramer. The (14)N nuclear quadrupole hyperfine structures were resolved and included in the spectroscopic fits of the various isotopomers. The rotational constants obtained from the fits were used to estimate the van der Waals bond lengths of the tetramer while the (14)N nuclear quadrupole coupling contants and the observed inversion tunneling splittings provided information about the internal dynamics of the NH(3) moiety. The experimental results were complemented by the construction of three ab initio potential energy surfaces [CCSD(T)] for the Ne(3)-NH(3) complex, each corresponding to a different internal geometry of NH(3) ( 90 degree angle HNH = 106.67 degrees, 90 degree angle HNH = 113.34 degrees, and 90 degree angle HNH = 120.00 degrees ). The topologies of the surfaces are related to the structures and dynamics of the tetramer. Extensive comparisons are made between the results obtained for the Ne(3)-NH(3) tetramer in this work and previous experimental and ab initio studies of related Rg(n)-NH(3) van der Waals clusters.  相似文献   

4.
The NH-He van der Waals complex was characterized via laser excitation of bands associated with the NH A (3)Pi-X (3)Sigma(-) transition. It was demonstrated that the ground state supports a bound level with a rotational constant of B"=0.334(2) cm(-1). These results are in agreement with the predictions of recent high-level theoretical calculations. Spin-orbit predissociation of the excited complex was observed, and the spectra yield insights regarding the NH(A)+He potential energy surfaces.  相似文献   

5.
The NH-N(2) van der Waals complex has been examined at the CCSD(T) level of theory using aug-cc-pVDZ and aug-cc-pVTZ basis sets. The full basis set superposition error correction was applied. Two minimum energy structures were located for the electronic ground state. The global minimum corresponds to a linear geometry of the complex (NH-N-N), with D(e)=236 cm(-1) and R(c.m.)=4.22 A. The secondary minimum corresponds to a T-shaped geometry of C(2v) symmetry, where the nitrogen atom of the H-N moiety points toward the center of mass of the N(2) unit, aligned with the a-inertial axis of the complex. The binding energy and R(c.m.) value for the secondary minimum were 144 cm(-1) and 3.63 A, respectively. This potential energy surface is consistent with the properties of matrix-isolated NH-N(2), and it is predicted that linear NH-N(2) will be a stable complex in the gas phase at low temperatures.  相似文献   

6.
Characteristics of the single and double Ne van der Waals complexes of p-difluorobenzene (pDFB) have been explored with ultraviolet fluorescence excitation and dispersed fluorescence spectroscopy. Eight S(1)-S(0) fluorescence excitation bands involving six ring modes of pDFB-Ne and two bands of pDFB-Ne(2) have been identified. Band assignments are confirmed by dispersed fluorescence from the pumped band. Shifts of the complex bands from the analogous monomer bands are generally 4 cm(-1) to the red for pDFB-Ne and 8 cm(-1) for pDFB-Ne(2). None of the observed ring modes is significantly perturbed by complexation in either the S(1) or S(0) states. The pDFB-Ne S(1) van der Waals binding energy D(0')相似文献   

7.
8.
The potential-energy surface of the ground electronic state of CaHCl has been obtained from 6400 ab initio points calculated at the multireference configuration-interaction level and represented by a global analytical fit. The Ca+HCl-->CaCl+H reaction is endothermic by 5100 cm(-1) with a barrier of 4470 cm(-1) at bent geometry, taking the zero energy in the Ca+HCl asymptote. On both sides of this barrier are potential wells at linear geometries, a shallow one due to van der Waals interactions in the entrance channel, and a deep one attributed to the H(-)Ca(++)Cl(-) ionic configuration. The accuracy of the van der Waals well depth, approximately 200 cm(-1), was checked by means of additional calculations at the coupled-cluster singles and doubles with perturbative triples level and it was concluded that previous empirical estimates are unrealistic. Also, the electric dipole function was calculated, analytically fitted in the regions of the two wells, and used to analyze the charge shifts along the reaction path. In the insertion well, 16,800 cm(-1) deep, the electric dipole function confirmed the ionic structure of the HCaCl complex and served to estimate effective atomic charges. Finally, bound rovibrational levels were computed both in the van der Waals well and in the insertion well, and the infrared-absorption spectrum of the insertion complex was simulated in order to facilitate its detection.  相似文献   

9.
Ab initio equation-of-motion coupled cluster (EOM-CCSD) one-bond spin-spin coupling constants (1)J(B-N), (1)J(B-H), and (1)J(B-F) have been evaluated for complexes X:BH(n)F(3-n) with X = N(2), NCH, NCLi, H(2)CNH, NF(3), and NH(3), for n = 0-3. These complexes can be classified as either covalent or van der Waals complexes, on the basis of their binding energies and B-N distances. (1)J(B-N) for covalent complexes varies significantly from -19 to +9 Hz, whereas (1)J(B-N) is less than 2 Hz for van der Waals complexes. An absolute value of (1)J(B-N) of 3 Hz or greater indicates that the complex is covalently bonded, but a small value of this coupling constant does not necessarily mean that it is a van der Waals complex, in view of the variation among these complexes found for (1)J(B-N) as a function of the B-N distance. Deformation of the boron acid upon complex formation and electron donation by the nitrogen base has opposing effects on both (1)J(B-H) and (1)J(B-F). These effects are relatively small in van der Waals complexes. In covalent complexes, electron donation has the dominant effect on (1)J(B-H), and on (1)J(B-F) in complexes with BH(2)F and BHF(2), but acid deformation has the dominant effect on (1)J(B-F) in complexes with BF(3). Values of both (1)J(B-H) and (1)J(B-F) reflect the van der Waals or covalent nature of the B-N bond.  相似文献   

10.
An extended analysis of the noncovalent interaction OC:HI is reported using microwave and infrared supersonic jet spectroscopic techniques. All available spectroscopic data then provide the basis for generating an accurately determined vibrationally complete semiempirical intermolecular potential function using a four-dimensional potential coordinate morphing methodology. These results are consistent with the existence of four bound isomers: OC-HI, OC-IH, CO-HI, and CO-IH. Analysis also leads to unequivocal characterization of the common isotopic ground state as having the OC-HI structure and with the first excited state having the OC-IH structure with an energy of 3.4683(80) cm(-1) above the ground state. The potential is consistent with the following barriers between the pairs of isomers: 382(4) cm(-1) (OC-IH/OC-HI), 294(5) cm(-1) (CO-IH/CO-HI), 324(3) cm(-1) (OC-IH/CO-IH), and 301(2) cm(-1) (OC-HI/CO-HI) defined with respect to each lower minimum. The potential is also determined to have a linear OC-IH van der Waals global equilibrium minimum structure having R(e)=4.180(11) A?, θ(1)=0.00(1)°, and θ(2)=0.00(1)°. This is differentiated from its OC-HI ground state hydrogen bound structure having R(0)=4.895(1) A?, θ(1)=20.48(1)°, and θ(2)=155.213(1)° where the distances are defined between the centers of mass of the monomers and θ(1) and θ(2) as cos(-1)[(1/2)] for i=1 and 2. A fundamentally new molecular phenomenon - ground state isotopic isomerization is proposed based on the generated semiempirical potential. The protonated ground state hydrogen-bonded OC-HI structure is predicted to be converted on deuteration to the corresponding ground state van der Waals OC-ID isomeric structure. This results in a large anomalous isotope effect in which the R(0) center of mass distance between monomeric components changes from 4.895(1) to 4.286(1) A?. Such a proposed isotopic effect is demonstrated to be a consequence of differential zero point energy factors resulting from the shallower nature of hydrogen bonding at a local potential minimum (greater quartic character of the potential) relative to the corresponding van der Waals global minimum. Further consequences of this anomalous deuterium isotope effect are also discussed.  相似文献   

11.
Laser-induced fluorescence and action spectroscopy experiments have identified multiple conformers of the D2...ICl van der Waals complex for both ortho-D2 (o-D2) and para-D2 (p-D2). As with the analogous H2...ICl van der Waals complexes [Darr, J. P.; Crowther, A. C.; Loomis, R. A.; Ray, S. E.; McCoy, A. B. J. Phys. Chem. A 2007, 111, 13387], the C2v conformer with the deuterium molecule localized at the iodine atom end of the dihalogen is significantly more stable than the asymmetric conformer that has the deuterium positioned orthogonally to the ICl bond axis, D0' = 223.9(2.4) versus 97.3(8)-103.9(3) cm(-1) for p-D2...I(35)Cl(X, v'=0). For both conformers, complexes containing p-D2 are found to be more strongly bound than those with o-D2. The electronically excited D2...ICl(A, v') and D2...ICl(B, v') complexes are found to have equilibrium geometries that are nearly the same as those of the ground-state asymmetric structures. Calculated D2...ICl(B, v'=3) energies and probability amplitudes obtained using a simple scaled He + ICl(B, v'=3) potential provide clues to the nature of the different excited-state levels accessed.  相似文献   

12.
The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O(2) (X=CH(3)I, C(3)H(6), C(6)H(12), and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous detection of the O((3)P(J),J=2,1,0) atom photoproduct via (2+1) resonance enhanced multiphoton ionization. The kinetic energy distribution (KED) and angular anisotropy of the product O atom recoil in this dissociation are measured using the velocity map imaging technique configured for either full ("crush") or partial ("slice") detection of the three-dimensional O((3)P(J)) atom product Newton sphere. The measured KED and angular anisotropy reveal a distinct difference in the mechanism of O atom generation from an X-O(2) complex compared to a free O(2) molecule. The authors identify two one-photon excitation pathways, the relative importance of which depends on IPx, the ionization potential of the X partner. One pathway, observed for all complexes independent of IPx, involves a direct transition to the perturbed covalent state X-O(2)(A'(3)Delta(u)) with excitation localized on the O(2) subunit. The predominantly perpendicular character of this channel relative to the laser polarization detection, together with data on the structure of the complex, allows us to confirm that X partner induced admixing of an X(+)-O(2) (-) charge transfer (CT) state is the perturbing factor resulting in the well-known enhancement of photoabsorption within the Herzberg continuum of molecular oxygen. The second excitation pathway, observed for X-O(2) complexes with X=CH(3)I and C(3)H(6), involves direct excitation into the (3)(X(+)-O(2) (-)) CT state of the complex. The subsequent photodissociation of this CT state by the same laser pulse gives rise to the superoxide anion O(2) (-), which then photodissociates, providing fast (0.69 eV) O atoms with a parallel image pattern. Products from the photodissociation of singlet oxygen O(2)(b (1)Sigma(g) (+)) are also observed when the CH(3)I-O(2) complex was irradiated. Potential energy surfaces (PES) for the ground and relevant excited states of the X-O(2) complex have been constructed for CH(3)I-O(2) using the results of CASSCF calculations for the ground and CT states of the complex as well as literature data on PES of the subunits. These model potential energy surfaces allowed us to interpret all of the observed O((3)P(J)) atom production channels.  相似文献   

13.
Recent interest in the application of density functional theory prompted us to test various functionals for the van der Waals interactions in the rare-gas dimers, the alkaline-earth metal dimers, zinc dimer, and zinc-rare-gas dimers. In the present study, we report such tests for 18 DFT functionals, including both some very recent functionals and some well-established older ones. We draw the following conclusions based on the mean errors in binding energies and complex geometries: (1) B97-1 gives the best performance for predicting the geometry of rare-gas dimers, whereas M05-2X and B97-1 give the best energetics for rare-gas dimers. (2) PWB6K gives the best performance for the prediction of the geometry of the alkaline-earth metal dimers, zinc dimers, and zinc-rare-gas dimers. M05-2X gives the best energetics for the metal dimers, whereas B97-1 gives the best energetics for the zinc-rare-gas dimers. (3) The M05 functional is unique in providing good accuracy for both covalent transition-metal dimers and van der Waals metal dimers. (4) The combined mean percentage unsigned error in geometries and energetics shows that M05-2X and MPWB1K are the overall best methods for the prediction of van der Waals interactions in metal and rare-gas van der Waals dimers.  相似文献   

14.
The first two-dimensional potential energy surface for the Xe-CO van der Waals interaction is calculated by the single and double excitation coupled-cluster theory with noniterative treatment of triple excitations. Mixed basis sets, aug-cc-pVQZ for the C and O atoms, and aug-cc-pVQZ-PP for the Xe atom, with an additional (3s3p2d2f1g) set of midbond functions, are used. Our potential energy surface has a single, nearly T-shaped minimum of -131.87 cm(-1) at R(e)=7.80a(0) and theta(e)=102.5 degrees. Based on the potential, the bound state energies are calculated for seven isotopomers of the Xe-(12)C(16)O complex, seven isotopomers of the Xe-(13)C(16)O complex, and three isotopomers of the Xe-(13)C(18)O complex. Compared with available experimental data, the predicted transition frequencies and spectroscopic constants are in good agreement with the experimental results.  相似文献   

15.
Excitation spectrum of Cd2 van der Waals complex was observed in a supersonic free-jet expansion beam. Cadmium dimers were seeded in argon environment (a carrier gas) while a pulsed dye laser served as an excitation light source. Well resolved structures of vibrational bands arising from transition between 1u(3pi(u)) and X0g+ (1sigmag+) states were observed. Using a Birge-Sponer method for analyzing the vibrational excitation spectrum, the first-time determination of the spectroscopical potential parameters of the 1u molecular state was performed. We obtained D'e = 723 +/- 10 cm(-1), omega'e = 28.9 +/- 1.0 cm(-1), omega'e x'e = 0.260 +/- 0.002 cm(-1) and R'e = 3.93 +/- 0.05 A. The latter value was estimated with the help of the computer-simulation of the spectrum. The results are compared with recent results of ab initio calculation of Czuchaj et al. (Chem. Phys. Lett. 225 (1994) 233) and demonstrate a reasonable agreement.  相似文献   

16.
Counterpoise (CP)-corrected geometry optimization and frequency calculation have been performed at MP2(FC) level of theory for the linear van der Waals complex FH...Ne. With the basis set 6-311++(2df, 3pd), CP-corrected frequency shift of nu(FH) is -0.4504 cm(-1), which agrees well with the experimental red shift of 0.4722 cm(-1).  相似文献   

17.
High-resolution IR-UV multiple resonance methods are employed to elucidate the photodissociation dynamics of quantum state-selected Ar-HOD and Ar-H(2)O van der Waals clusters. A single mode pulsed OPO operating in the region of the OH second overtone is used to prepare individual rovibrational states that are selectively photodissociated at specific excimer wavelengths. Subsequent fluorescence excitation of the resulting OH (OD) fragments yields dynamical information on the photofragmentation event and any resulting intracluster collisions. This technique is used to characterize spectroscopically the Pi(1(01)), nu(OH)=3<--Sigma(0(00)), v(OH)=0 overtone band of the Ar-HOD complex with an origin at 10648.27 cm(-1). The effects of Ar complexation on the dissociation dynamics are inferred by comparison of the OD photofragment quantum state distributions resulting from dissociation of single rovibrational states of the complex with those from isolated HOD photodissociation. The important role played by the initial internal state of the complex is demonstrated by comparison of the current Ar-HOD data with previously published results for the Ar-H(2)O Sigma(0(00))[03(-)> state. We interpret the dramatic differences in the dynamics of the two systems as manifestations of the nodal structure of the vibrational state in the parent complex and the way in which it governs the collision probability between the Ar atom and the escaping photofragments.  相似文献   

18.
We report an ab initio study of the van der Waals region of the O(3P)-H2 potential energy surface based on RCCSD(T) calculations with an aug-cc-pVQZ basis supplemented by bond functions. In addition, an open-shell implementation of symmetry-adapted perturbation theory (SAPT) is used to corroborate the RCCSD(T) calculations and to investigate the relative magnitudes of the various contributions to the van der Waals interaction. We also investigate the effect of the spin-orbit coupling on the position and depth of the van der Waals well. We predict the van der Waals minimum to occur in perpendicular geometry, and located at a closer distance than a secondary well in colinear geometry. The potentials obtained in the present study confirm the previous calculations of Alexander [M. H. Alexander, J. Chem. Phys., 1998, 108, 4467], but disagree with the earlier work of Harding and co-workers [Z. Li, V. A. Apkarian and L. B. Harding, J. Chem. Phys., 1997, 106, 942] as well as with recently refitted surfaces of Brand?o and coworkers [J. Brand?o, C. Mogo and B. C. Silva, J. Chem. Phys., 2004, 121, 8861]. Inclusion of spin-orbit coupling reduces the depth of the van der Waals minimum without causing a change in its position.  相似文献   

19.
Laser-induced fluorescence and action spectroscopy experiments were performed to identify the origin of the Ar...I(2) continuum signals observed in and above the I(2) B-X spectral region. We have verified that these signals arise from transitions of the linear Ar...I(2) (X,v"=0) complex. The data provides no evidence that the excited state complexes undergo a one-atom caging mechanism when prepared above the I(2)(B) dissociation limit, Ar...I(2) (B)*-->Ar+I+I*-->Ar+I(2)(B,v'). Instead, our results indicate that the continuum signals result from bound-free transitions of the linear Ar...I(2) X,v(")=0) complex to the inner repulsive walls of numerous Ar+I(2)(B,v') intermolecular potentials. The bound-free continuum signal associated with transitions to each Ar+I(2)(B,v') potential spans an energy region >700 cm(-1). We have found that the continuum signals turn-on 250(2)cm(-1) above the corresponding I(2) B-X,v'-0 band origin, and this energy represents the binding energy of the linear Ar...I(2) (X,v"=0) conformer, D(0) (")(L)=250(2)cm(-1).  相似文献   

20.
We present the ab initio potential-energy surfaces of the NH-NH complex that correlate with two NH molecules in their 3sigma- electronic ground state. Three distinct potential-energy surfaces, split by exchange interactions, correspond to the coupling of the S(A) = 1 and S(B) = 1 electronic spins of the monomers to dimer states with S = 0, 1, and 2. Exploratory calculations on the quintet (S = 2), triplet (S = 1), and singlet (S = 0) states and their exchange splittings were performed with the valence bond self-consistent-field method that explicitly accounts for the nonorthogonality of the orbitals on different monomers. The potential surface of the quintet state, which can be described by a single Slater determinant reference function, was calculated at the coupled cluster level with single and double excitations and noniterative treatment of the triples. The triplet and singlet states require multiconfiguration reference wave functions and the exchange splittings between the three potential surfaces were calculated with the complete active space self-consistent-field method supplemented with perturbative configuration interaction calculations of second and third orders. Full potential-energy surfaces were computed as a function of the four intermolecular Jacobi coordinates, with an aug-cc-pVTZ basis on the N and H atoms and bond functions at the midpoint of the intermolecular vector R. An analytical representation of these potentials was given by expanding their dependence on the molecular orientations in coupled spherical harmonics, and representing the dependence of the expansion coefficients on the intermolecular distance R by the reproducing kernel Hilbert space method. The quintet surface has a van der Waals minimum of depth D(e) = 675 cm(-1) at R(e) = 6.6a0 for a linear geometry with the two NH electric dipoles aligned. The singlet and triplet surfaces show similar, slightly deeper, van der Waals wells, but when R is decreased the weakly bound NH dimer with S = 0 and S = 1 converts into the chemically bound N2H2 diimide (also called diazene) molecule with only a small energy barrier to overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号