首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A detailed analysis of the high-resolution infrared emission spectra of gaseous HgH2 and HgD2 in the 1200-2200 cm(-1) spectral range is presented. The nu3 antisymmetric stretching fundamental bands of 204HgH2, 202HgH2, 201HgH2, 200HgH2, 199HgH2, 198HgH2, 204HgD2, 202HgD2, 201HgD2, 200HgD2, 199HgD2, and 198HgD2, as well as a few hot bands involving nu1, nu2, and nu3 were analyzed rotationally, and spectroscopic constants were obtained. Using the rotational constants of the 000, 100, 01(1)0, and 001 vibrational levels, we determined the equilibrium rotational constants (B(e)) of the most abundant isotopologues, 202HgH2 and 202HgD2, to be 3.135325(24) cm(-1) and 1.569037(16) cm(-1), respectively, and the associated equilibrium Hg-H and Hg-D internuclear distances (re) are 1.63324(1) A and 1.63315(1) A, respectively. The re distances of 202HgH2 and 202HgD2 differ by about 0.005%, which can be attributed to the breakdown of the Born-Oppenheimer approximation.  相似文献   

2.
A three-dimensional global potential energy surface for the ground electronic state of MgH(2) is constructed from more than 3000 ab initio points calculated using the internally contracted multireference configuration interaction method with the Davidson correction at the complete basis set limit. Low-lying vibrational energy levels of MgH(2) and MgD(2) are calculated using the Lanczos algorithm, and found to be in good agreement with known experimental band origins. The majority of the vibrational energy levels up to 8000 cm(-1) are assigned with normal mode quantum numbers. However, our results indicate a gradual transition from a normal mode regime for the stretching vibrations at low energies to a local mode regime near 7400 cm(-1), as evidenced by a decreasing energy gap between the (n(1),0,0) and (n(1)-1,0,1) vibrational states and bifurcation of the corresponding wave functions.  相似文献   

3.
Full-dimensional ab initio potential-energy surface (PES) and dipole moment surface are constructed for a methane molecule at the CCSD(T)/cc-pVTZ and MP2/cc-pVTZ levels of theory, respectively, by the modified Shepard interpolation method based on the fourth-order Taylor expansion [MSI(4th)]. The reference points for the interpolation have been set in the coupling region of CH symmetric and antisymmetric stretching modes so as to reproduce the vibrational energy levels related to CH stretching vibrations. The vibrational configuration-interaction calculations have been performed to obtain the energy levels and the absorption intensities up to 9000 cm(-1) with the use of MSI(4th)-PES. The calculated fundamental frequencies and low-lying vibrational energy levels show that MSI(4th) is superior to the widely employed quartic force field, giving a better agreement with the experimental values. The absorption bands of overtones as well as combination bands, which are caused by purely anharmonic effects, have been obtained up to 9000 cm(-1). Strongly coupled states with visible intensity have been found in the 6500-9000 cm(-1) region where the experimental data are still lacking.  相似文献   

4.
The trifluoromethyl radical, CF(3)(●), is studied for the first time by means of threshold photoelectron spectroscopy (TPES). The radical is produced in the gas phase using the flash-pyrolysis technique from hexafluoroethane as a precursor. CF(3)(+) total ion yield and mass-selected TPES of the radical are recorded using a spectrometer based upon velocity map imaging and Wiley-McLaren time-of-flight coupled to the synchrotron radiation. The high resolution of the instrument and of the photons allows the observation of rich vibrational progressions in the TPES of CF(3)(●). By using Franck-Condon factors computed by Bowman and coworkers, we have been able to simulate the TPES. The initial vibrational temperature of the radical beam has been evaluated at 350 ± 70 K. The structures have been identified as transitions between (n(1),n(2)) and (n(1)(+),n(2)(+)) vibrational levels of CF(3) and CF(3)(+) with small excitation of the breathing mode, ν(1)(+) (,) and large excitation (n(2)(+) = 10-26) of the umbrella mode, ν(2)(+), in the cation. From the energy separation between the two resolved peaks of each band, a value of 994 ± 16 cm(-1) has been derived for the ν(1)(+) breathing frequency of CF(3)(+). For the high-lying n(2)(+) levels, the apparent ν(2)(+) umbrella spacing, 820 ± 14 cm(-1), is fairly constant. Taking into account the ν(2)(+) anharmonicity calculated by Bowman and coworkers, we have deduced ν(2)(+) = 809 ± 14 cm(-1), and semi-empirical estimations of the adiabatic ionization energy IE(ad.)(CF(3)(●)) are proposed in good agreement with most of previous works. A value of the vertical ionization potential, IE(vert.)(CF(3)(●)) = 11.02 eV, has been derived from the observation of a photoelectron spectrum recorded at a fixed photon energy of 12 eV.  相似文献   

5.
We report a refined potential energy function for the ground electronic state of CS2 based on a least-squares fitting to several low-lying experimental vibrational frequencies. Energy levels up to 20,000 cm(-1) have been obtained on this empirical potential using the Lanczos algorithm and potential optimized discrete variable representation. Among them, 329 levels below 10,000 cm(-1) are assigned with approximate normal mode quantum numbers (n1, n(0)2, n3), based on expectation values of one-dimensional (1D) reference Hamiltonians. An effective Hamiltonian is extracted from these assigned levels. The agreement with experimental data, including those of several isotopically substituted species, is excellent. In addition, some Fermi and anharmonic resonances are analyzed. The nearest neighbor level spacing and delta3 distributions indicated that the vibrational spectrum of CS2 is largely regular in the energy range up to 20,000 cm(-1). Semiclassical phase space analysis, including bifurcation analysis of the spectroscopic Hamiltonian, is used to interpret subtle anomalies signaled by expectation values used in normal mode assignments. The meaning of Fermi resonance is clarified by contrasting the semiclassical analysis of CS2 and CO2.  相似文献   

6.
周燕子  谢代前  卢语晖 《化学学报》2002,60(8):1405-1410
利用量子力学方法研究了二氧化碳振动高激发态的能级及其统计分布。在 Radau坐标下采用算法稳定,精度高且所需计算机内存较少的Lanczos算法以及势能 优化的离散变量表象方法,获得了20000 cm~(-1)以下的所有振动束缚态能级,并 对这些振动能级进行了指认。此外,还进一步分析了振动高激发态的Fermi共振与 非谐性振动。统计分布表明,二氧化碳的振动光谱在20000 cm~(-1)以下呈规则分 布。  相似文献   

7.
We report fluorescence excitation and single vibronic level emission spectra of jet-cooled CDBr in the 450-750 nm region. A total of 32 cold bands involving the pure bending levels 2(0)n with n=3-10 and combination bands 2(0)n3(0)1 (n=2-10), 2(0)n3(0)2 (n=2-9), 1(0)(1)2(0)n (n=7-10), and 1(0)(1)2(0)n3(0)(1) (n=6,8-9) in the A1A" <-- X1A' system of this carbene were observed; most of these are reported and/or rotationally analyzed here for the first time. Rotational analysis yielded band origins and effective (B) rotational constants for both bromine isotopomers (CD79Br and CD81Br). The derived A1A" vibrational intervals are combined with results of Yu et al. [J. Chem. Phys. 115, 5433 (2001)] to derive barriers to linearity for the 2n, 2n3(1), and 2n3(2) progressions. The A1A" state C-D stretching frequency (2350 cm(-1)) is determined for the first time, in excellent agreement with theory, as are the 79Br-81Br isotope splittings in the excited state. Our emission spectra probe the vibrational structure of the X1A' and a3A" states up to approximately 9000 cm(-1) above the vibrationless level of the X1A' state; the total number of levels observed is around twice that previously reported. Unlike CHBr, where even the lowest bending levels are perturbed by spin-orbit interaction with the triplet origin, the term energy of every level save one below 3000 cm(-1) in CDBr is reproduced by a Dunham expansion to within a standard deviation of 1 cm(-1), and a spin-orbit coupling matrix element of approximately 330 cm(-1) is derived from a deperturbation analysis of the triplet origin. The multireference configuration interaction (MRCI) calculations of Yu et al. [J. Chem. Phys. 115, 5433 (2001)] well reproduce triplet perturbations in the pure bending manifold, and globally, the vibrational frequencies of X1A', a3A", and A1A" are in excellent agreement with theoretical predictions.  相似文献   

8.
The energy levels of CH(3)Cl(+)X?(2)E showing strong spin-vibronic coupling effect (Jahn-Teller effect) have been measured up to 3500 cm(-1) above the ground vibrational state using one-photon zero-kinetic energy photoelectron and mass-analyzed threshold ionization spectroscopic method. Theoretical calculations have been also performed to calculate the spin-vibronic energy levels using a diabatic model and ab initio adiabatic potential energy surfaces (PESs). In the theoretical calculations the diabatic potential energy surfaces are expanded by the Taylor expansions up to the fourth-order including the multimode vibronic interactions. The calculated spin-orbit energy splitting (224.6 cm(-1)) for the ground vibrational state is in good agreement with the experimental data (219 ± 3 cm(-1)), which indicates that the Jahn-Teller and the spin-orbit coupling have been properly described in the theoretical model near the zero-point energy level. Based on the assignments predicted by the theoretical calculations, the experimentally measured energy levels were fitted to those from the diabatic model by optimizing the main spectroscopic parameters. The PESs from the ab initio calculations at the level of CASPT2/vq(t)z were thus compared with those calculated from the experimentally determined spectroscopic parameters. The theoretical diagonal elements in the diabatic potential matrix are in good agreement with those determined using the experimental data, however, the theoretical off-diagonal elements appreciably deviate from those determined using the experimental data for geometric points far away from the conical intersections. It is also concluded that the JT effect in CH(3)Cl(+) mainly arises from the linear coupling and the mode coupling between the CH(3) deform (υ(5)) and CH(3) rock (υ(6)) vibrations. The mode couplings between the symmetric C-Cl stretching vibration υ(3) with υ(5) and υ(6) are also important to understand the spin-vibronic structure of the molecule.  相似文献   

9.
The most recently published listings of vibrational term values and corresponding turning points of the potential energy curve of X (1)Sigma(g) (+) K(2) consist of two sets of data: energy levels v(")=0-73 and v(")=74-81. The two sets of data are found to exhibit a discontinuity. This is due to different Dunham coefficients used to produce a listing of turning points for levels v(")=0-73 and for levels v(")=74-81. This work provides an explicit, self-consistent listing of turning points for the entire domain of observed vibrational term values. New values are reported for levels v(")=53-81. This potential yields eigenvalues in excellent agreement with experimental vibrational term values and predicts two more bound levels. A "universal" function proposed in 1991 for predicting potential energy curves yields eigenvalues for levels v(")=0-81 (99.96% of dissociation) that have an average absolute deviation from the experiment of 0.95 cm(-1).  相似文献   

10.
The equilibrium geometry of thioformamide HCSNH2 has been determined at the MP2 and CCSD(T) electron correlation levels under C(s) symmetry constraints using triple-zeta basis sets up to cc-pVTZ. All optimized planar structures are true minima on the potential-energy surface and are characterized by the C-N bond length within 1.353-1.343 A, C-S distances of 1.656-1.628 A, and NCS angle between 125.7 degrees and 125.9 degrees . The wave number of the NH2 out-of-plane wagging mode computed in the harmonic approximation shows stronger dependence on the basis set rather than the electron correlation level and varies from 85.9 cm(-1) at CCSD(T)cc-pVDZ level to 335 cm(-1) at MP2/aug-cc-pVTZ level. Anharmonic vibrational spectra of HCSNH2 and HCSND2 have been determined directly from the potential-energy surfaces computed at MP2 level in triple-zeta valence (TZV)(2df,2p) and TZV+(2df,2p) basis sets using vibrational self-consistent-field (VSCF) and correlation-corrected VSCF (CC-VSCF) methods. CC-VSCF wave numbers of fundamental, first overtone, and most intense combination transitions are reported for thioformamide and those of fundamentals for thioformamide-d2. The NH2 wagging (nu12) mode is strongly anharmonic and its fundamentals have been computed at 406.9 cm(-1) [TZV(2df,2p)] and 399.5 cm(-1) [TZV+(2df,2p)], which is remarkably close to the experimental energy of 393 cm(-1). Anharmonically computed fundamentals of this mode in thioformamide-d2, 299.7 cm(-1) [TZV(2df,2p)] and 299.6 cm(-1) [TZV+(2df,2p)], are only approximately 7 cm(-1) higher than the transition energy (293 cm(-1)) observed in the gas phase spectrum of HCSND2. The first overtone of the NH2 wagging mode of thioformamide (nu12 (02)) has been calculated by CC-VSCF procedure at 830.8 cm(-1) [TZV(2df,2p)] and 880.0 cm(-1) [TZV+(2df,2p)], which implies "negative" (nu12 (02)>2*nu12 (01)) anharmonicity of this mode.  相似文献   

11.
The photodissociation of CF(3)I at 304 nm has been studied using long time-delayed core-sampling photofragment translational spectroscopy. Due to its capability of detecting the kinetic energy distribution of iodine fragments with high resolution, it is able to directly assign the vibrational state distribution of CF(3) fragments. The vibrational state distributions of CF(3) fragments in the I(*)((2)P(12)) channel, i.e., (3)Q(0+) state, have a propensity of the nu(2) (') umbrella mode with a maximum distribution at the vibrational ground state. For the I((2)P(32)) channel, i.e., (1)Q(1)<--(3)Q(0+), the excitation of the nu(2) (') umbrella mode accounts for the majority of the vibrational excitation of the CF(3) fragments. The 1 nu(1) (') (symmetric CF stretch) +nnu(2) (') combination modes, which are associated with the major progression of the nu(2) (') umbrella mode, are observed for the photodissociation of CF(3)I at the I channel, i.e., (3)Q(1) state. The bond dissociation energy of the CI bond of CF(3)I is determined to be D(0)(CF(3)-I)相似文献   

12.
A double minimum six-dimensional potential energy surface (PES) is determined in symmetry coordinates for the most stable rhombic (D2h) B4 isomer in its 1Ag electronic ground state by fitting to energies calculated ab initio. The PES exhibits a barrier to the D4h square structure of 255 cm(-1). The vibrational levels (J=0) are calculated variationally using an approach which involves the Watson kinetic energy operator expressed in normal coordinates. The pattern of about 65 vibrational levels up to 1600 cm(-1) for all stable isotopomers is analyzed. Analogous to the inversion in ammonia-like molecules, the rhombus rearrangements lead to splittings of the vibrational levels. In B4 it is the B1g (D4h) mode which distorts the square molecule to its planar rhombic form. The anharmonic fundamental vibrational transitions of 11B4 are calculated to be (splittings in parentheses): G(0)=2352(22) cm(-1), nu1(A1g)=1136(24) cm(-1), nu2(B1g)=209(144) cm(-1), nu3(B2g)=1198(19) cm(-1), nu4(B2u)=271(24) cm(-1), and nu5(Eu)=1030(166) cm(-1) (D4h notation). Their variations in all stable isotopomers were investigated. Due to the presence of strong anharmonic resonances between the B1g in-plane distortion and the B2u out-of-plane bending modes, the higher overtones and combination levels are difficult to assign unequivocally.  相似文献   

13.
The energy, geometrical parameters and vibrational wavenumbers of crotonaldehyde were calculated by using ab initio and B3LYP with 6-31G(d,p) and 6-311G(d,p) basis sets. The FT-IR and FT-Raman spectra for liquid state crotonaldehyde have been recorded in the region 3400-400 cm(-1) and 3400-100 cm(-1), respectively and compared with the theoretical spectrographs constructed from the scaled harmonic vibrational frequencies calculated at HF and DFT levels. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. Detailed interpretations on vibrational modes have been made on the observed and theoretical spectra and PED for each mode was also reported more precisely. HOMO and LUMO energy levels are constructed and the corresponding theoretical frontier energy gaps are calculated to realise the charge transfer occurring in the molecule. The thermodynamic properties of the title compound have been calculated at different temperatures and the results reveals the standard heat capacities (C(0)(p)), standard entropies (S(0)) and standard enthalpy changes (ΔH(0)) increases with rise in temperature.  相似文献   

14.
The full configuration interaction (FCI) study of the ground state of the neutral beryllium trimer has been performed using an atomic natural orbitals [3s2p1d] basis set. Both triangular and linear structures have been considered for the Be(3) cluster. The optimal geometry for the equilateral triangle has been calculated. The potential energy cut sections along the normal a(1)(') mode and one of the components of the e(') mode have then been studied. The FCI symmetric atomization potential of the linear cluster is also reported. It shows a secondary van der Waals minimum at a long bond distance. All singular points in the potential energy curves are characterized. Other properties, like dissociation energies D(e) and vibrational frequencies, have been estimated from a fourth-order fitting of a large range of points around the minima. The calculated FCI wave number values for the nu(1) and nu(2) normal modes are (467.33+/-0.43) cm(-1) and (390.77+/-0.56) cm(-1).  相似文献   

15.
Velocity map imaging has been used to measure the distributions of translational energy released in the dissociation of p-difluorobenzene-Ar van der Waals complexes from the 5(1), 3(1), 5(2), 3(1)5(1), 5(3), 3(2), and 3(2)5(1) states. These states span 818-3317 cm(-1) of vibrational energy and correspond to a range of energies above dissociation of 451-2950 cm(-1). The translational energy release (recoil energy) distributions are remarkably similar, peaking at very low energy (10-20 cm(-1)) and decaying in an exponential fashion to approach zero near 300 cm(-1). The average translational energy released is small, shows no dependence on the initial vibrational energy, and spans the range 58-72 cm(-1) for the vibrational levels probed. The average value for the seven levels studied is 63 cm(-1). The low fraction of transfer to translation is qualitatively in accord with Ewing's momentum gap model [G. E. Ewing, Faraday Discuss. 73, 325 (1982)]. No evidence is found in the distributions for a high energy tail, although it is likely that the experiment is not sufficiently sensitive to detect a low fraction of transfer at high translational energies. The average translational energy released is lower than has been seen in comparable systems dissociating from triplet and cation states.  相似文献   

16.
By preparing methyl bromide (CH3Br) in selected rotational levels of the CH3Br(X(1)A1; v1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH3Br(+)(X(2)E(3/2); v1(+) = 1) state, where v1 and v1(+) are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH3Br(+)(X(2)E(3/2)) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the v1(+) vibrational frequency (2901.8 +/- 0.5 cm(-1)) and the ionization energies of the origin band (85 028.3 +/- 0.5 cm(-1)) and the v1(+) = 1 <-- v1 = 1 band (84 957.9 +/- 0.5 cm(-1)).  相似文献   

17.
Time-independent quantum scattering calculations have been carried out on the Walden inversion S(N)2 reaction Cl(-)+CH(3)Cl(')(v(1),v(2),v(3))-->ClCH(3)(v(1) ('),v(2) ('),v(3) ('))+Cl('-). The two C-Cl stretching modes (quantum numbers v(3) and v(3) (')) and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v(1) and v(1) ('), and inversion bending vibration, v(2) and v(2) (')) are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed. The scattering problem is formulated in hyperspherical coordinates using the exact Hamiltonian and exploiting the full symmetry of the problem. Converged state-selected reaction probabilities and product distributions have been calculated up to 6100 cm(-1) above the vibrational ground state of CH(3)Cl, i.e., up to initial vibrational excitation (2,0,0). In order to extract all scattering resonances, the energetic grid was chosen to be very fine, partly down to a resolution of 10(-12) cm(-1). Up to 2500 cm(-1) translational energy, initial excitation of the umbrella bending vibration, (0,1,0), is more efficient for reaction than exciting the C-Cl stretching mode, (0,0,1). The combined excitation of both vibrations results in a synergic effect, i.e., a considerably higher reaction probability than expected from the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm(-1) translational energy. Product distributions show that the umbrella mode is strongly coupled to the C-Cl stretching mode and cannot be treated as a spectator mode. The reaction probability rises almost linearly with increasing initial excitation of the umbrella bending mode. The effect with respect to the C-Cl stretch is five times larger for more than two quanta in this mode, and in agreement with previous work saturation is found. Exciting the high-frequency C-H stretching mode, (1,0,0), yields a large increase for small energies [more than two orders of magnitude larger than (0,0,0)], while for translational energies higher than 2000 cm(-1), it becomes a pure spectator mode. For combined initial excitations including the symmetric C-H stretch, the spectator character of the latter is even more pronounced. However, up to more than 1500 cm(-1) translational energy, the C-H vibration does not behave adiabatically during the course of reaction, because only 20% of the initial energy is found in the same mode of the product molecule. The distribution of resonance widths and peak heights is discussed, and it is found that individual resonances pertinent to intermediate complexes Cl(-)...CH(3)Cl show product distributions independent of the initial vibrational state of the reactant molecule. The relatively high reactivity, of resonance states with respect to excitation of any mode, found in previous work is confirmed in the present calculations. However, reactivity of intermediate states and reactivity with respect to initial vibrational excitation have to be distinguished. There is a strong mixing between the vibrational states reflected in numerous avoided crossings of the hyperspherical adiabatic curves.  相似文献   

18.
The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).  相似文献   

19.
The synchrotron based vacuum ultraviolet-pulsed field ionization-photoelectron (VUV-PFI-PE) spectrum of ammonia (NH(3)) has been measured in the energy range 10.12-12.12 eV using a room-temperature NH(3) sample. In addition to extending the VUV-PFI-PE measurement to include the v(2)(+) = 0, 10, 11, 12, and 13 and the v(1)(+) + nv(2)(+) (n = 4-9) vibrational bands, the present study also reveals photoionization transition line strengths for higher rotational levels of NH(3), which were not examined in previous PFI-PE studies. Here, v(1)(+) and v(2)(+) represent the N-H symmetric stretching and inversion vibrational modes of the ammonia cation (NH(3)(+)), respectively. The relative PFI-PE band intensities for NH(3)(+)(v(2)(+)=0-13) are found to be in general agreement with the calculated Franck-Condon factors. However, rotational simulation indicates that rotational photoionization transitions of the P-branches, particularly those for the lower v(2)(+) PFI-PE bands, are strongly enhanced by forced rotational autoionization. For the synchrotron based VUV-PFI-PE spectrum of the origin band of NH(3)(+), rotational transition intensities of the P-branch are overwhelming compared to those of other rotational branches. Similar to that observed for the nv(2)(+) (n = 0-13) levels, the v(1)(+) + nv(2)(+) (n = 4-9) levels are found to have a positive anharmonicity constant; i.e., the vibrational spacing increases as n is increased. The VUV laser PFI-PE measurement of the origin band has also been made using a supersonically cooled NH(3) sample. The analysis of this band has allowed the direct determination of the ionization energy of NH(3) as 82158.2 +/- 1.0 cm(-1), which is in good accord with the previous PFI-PE and photoionization efficiency measurements. Using the known nd(v(2)(+)=1,1(0)<--0(0)) Rydberg series of NH(3) as an example, we have demonstrated a valuable method based on two-color infrared-VUV-photoion depletion measurements for determining the rotational character of autoionizing Rydberg states.  相似文献   

20.
The microscopic origin of the abrupt cubic-tetrahedral symmetry change associated with the local a(2u) vibrational mode observed by electron paramagnetic resonance in BaF(2):Mn(2+) at approximately 50 K is explored by means of density functional theory calculations. It is found that while the a(2u) vibrational frequencies calculated for MnF(8) (6-) in CaF(2) (168 cm(-1)) and SrF(2) (132 cm(-1)) are real, in the case of BaF(2):Mn(2+), the adiabatic potential curve along this mode exhibits a double well with a small barrier of 50 cm(-1). Although the ground and first excited vibrational states are localized around the energy minima, the rest of the excited states resemble those of a harmonic oscillator centered at Q(a(2u))=0. Moreover, only the inclusion of the anharmonic coupling between a(2u) and t(1u) modes allows one to understand the T(d)-O(h) transition temperature. It is shown that both the unusually high Mn(2+)-F(-) distance in BaF(2):Mn(2+) and the pseudo-Jahn-Teller interaction of the t(2g)(xy;xz;yz) antibonding orbital with filled t(1u) orbitals favor the a(2u) instability. The calculated a(2u) force constant for different electronic states supports this conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号