首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Radioanalytical and Nuclear Chemistry - A typical type of natural zeolite(Z) modified with chitosan was applied to remove U(VI) from aqueous solution. Batch experiments were performed to...  相似文献   

2.
The phosphorylated hydrothermal carbon spheres (HCS-PO4) were developed by functionalizing hydrothermal carbon spheres (HCS) with o-phosphoethanolamine, and the structure and textural property were characterized by SEM and FT-IR. The parameters that affect the uranium(VI) sorption, such as solution pH, initial U(VI) concentration, contact time, and temperature, had been investigated. The HCS-PO4 showed the highest uranium sorption capacity at initial pH 6.0 and contact time of 120 min. The adsorption kinetics was better described by the pseudo-second-order model, and the adsorption process could be well defined by the Langmuir isotherm and the maximum monolayer adsorption capacity increased from 80.00 to 434.78 mg/g after phosphorylation. The thermodynamic parameters, ? (298 K), ?H° and ?S°, demonstrated shown that the sorption process of U(VI) onto HCS-PO4 was feasible, spontaneous and endothermic in nature. The spent HCS-PO4 could be effectively regenerated by 0.1 mol/L EDTA solution for the removal and recovery of U(VI) and reused for ten cycles at least. Selective adsorption studies showed that the HCS-PO4 could selectively remove U(VI), and the selectivity coefficients of HCS in the presence of co-existing ions, Mg(II), Na(I), Zn(II), Mn(II),Co(II), Ni(II), Sr(II), Cs(I) and Hg(II) improved after functionalization.  相似文献   

3.
Adsorption of U(VI) from aqueous solution by cross-linked rice straw(CRS) was studied with batch experiments. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR). The effect of contact time, initial pH, temperature, adsorbent amount and initial U(VI) concentration was investigated. Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption isotherms and two kinetic models of pseudo-first-order and pseudo-second-order were used to describe the adsorption process. The result showed that the adsorption process was highly pH dependent and the favorable initial pH was 5.0. The adsorption process was rapid within first 60 min and equilibrium reached at 100 min. The adsorption process could be well defined by the Langmuir isotherm and pseudo-second-order equation, which indicated that the chemical adsorption was the rate-limiting step. The thermodynamic parameters (?H°, ?S°, ?G°) of the adsorption system were also calculated. The negative value of ?H° and ?G° indicated that the reaction was endothermic and spontaneous in nature. All the above suggested that CRS has considerable potential for the removal of U(VI) from aqueous solution.  相似文献   

4.
The renaissance of nuclear energy promotes increasing basic research on the separation and enrichment of nuclear fuel associated radionuclides. Herein, we report the first study for developing mesoporous silica functionalized with phosphonate (NP10) as a sorbent for U(VI) sorption from aqueous solution. The mesoporous silica was synthesized by co-condensation of diethylphosphatoethyltriethoxysilane (DPTS) and tetraethoxysilane (TEOS), using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template. The synthesized silica nanoparticles were observed to possess a mesoporous structure with a uniform pore diameter of 2.7 nm, and to have good stability and high efficiency for U(VI) sorption from aqueous solution. A maximum sorption capacity of 303 mg g(-1) and fast equilibrium time of 30 min were achieved under near neutral conditions at room temperature. The adsorbed U(VI) can be easily desorbed by using 0.1 mol L(-1) HNO(3), and the reclaimed mesoporous silica can be reused with no decrease of sorption capacity. In addition, the preconcentration of U(VI) from a 100 mL aqueous solution using the functionalized mesoporous silica was also studied. The preconcentration factor was found to be as high as 100, suggesting the vast opportunities of this kind of mesoporous silica for the solid-phase extraction and enrichment of U(VI).  相似文献   

5.
Journal of Radioanalytical and Nuclear Chemistry - Sewage sludge-derived biochar (SSB) was prepared at 600 °C pyrolysis temperature and modified by co-precipitation with Fe3O4 to...  相似文献   

6.
The adsorption kinetics for removal of uranium (V1) from aqueous solution using silicon dioxide nanopowder (nano-SiO2) was investigated in batch and continuous techniques. Pseudo-first order and pseudo-second order were used to analyze the kinetics of batch experiments. In continuous technique the important parameters (initial concentration, flow rate and bed height) on the breakthrough curves were studied and the adsorption kinetics was analyzed using Thomas and Yoon and Nelson kinetic models. The comparison between the kinetic models was evaluated by the correlation coefficients (r2). The results indicated that the batch experiments fitted well with pseudo second-order kinetic model. The comparison of the experimental breakthrough curve to the breakthrough profile obtained from Thomas and Yoon and Nelson methods showed a satisfactory fit for silicon dioxide nanopowder.  相似文献   

7.
8.
The sulfonated mesoporous carbon (CMK-3-SO3H) prepared by functionalizing mesoporous carbon (CMK-3) via vapor transfer method has been explored for the removal and recovery of uranium from aqueous solutions. The influences of different experimental parameters such as solution pH, initial concentration, contact time and temperature on adsorption were investigated. The results showed that CMK-3-SO3H has the highest uranium sorption capacity at initial pH of 5.0 and contact time of 120 min, and the adsorption process could be better described by the pseudo-second-order model and Langmuir isotherm. Selective adsorption studies showed that the CMK-3-SO3H could selectively remove of U(VI), and the selectivity coefficients of mesoporous carbon in the presence of co-existing ions, Mg(II), Zn(II), Mn(II), Cu(II), Ni(II), Sr(II) and Hg(II) improved after functionalization.  相似文献   

9.
The compound N1-[3-(trimethoxysilyl)propyl]diethylenetriamine was anchored onto Amazon kaolinite surface by heterogeneous route. The modified and natural kaolinite samples were characterized by transmission electron microscopy, scanning electron microscopic, X-ray diffraction, and nuclear magnetic nuclei of 29Si and 13C. The well-defined peaks obtained in the 13C NMR spectrum in the 5.0-62.1 ppm region confirmed the attachment of organic functional groups as pendant chains bonded into the porous clay. The ability of these materials to remove U(VI) from aqueous solution was followed by a series of adsorption isotherms adjusted to a Sips equation at room temperature and pH 4.0. The kinetic parameters analyzed by the Lagergren and Elovich models gave a good fit for a pseudo-second order reaction with k2 values 16.0 and 25.1 mmol g−1 min−1 ranges for natural and modified kaolinite clays, respectively. The energetic effects caused by metal ion adsorption were determined through calorimetric titrations.  相似文献   

10.
Journal of Radioanalytical and Nuclear Chemistry - Polyaniline/oxidation etching g-C3N4 composites (PANI/OCN) were synthesized through an oxidative polymerization method and applied to remove...  相似文献   

11.
12.
13.
14.
Liu  Yuting  Wang  Yun  Xia  Hongtao  Wang  Qinghua  Chen  Xinchen  Lv  Jianqi  Li  Yang  Zhao  Jiankun  Liu  Yan  Yuan  Dingzhong 《Journal of Radioanalytical and Nuclear Chemistry》2022,331(9):3915-3925
Journal of Radioanalytical and Nuclear Chemistry - Uranium is the important nuclear fuel and its effective adsorption using low-cost materials is meaningful to environmental protection and...  相似文献   

15.
16.
Uranium is one of the most hazardous heavy metal due to its long half-life radioactivity, high toxicity and mobility as aqueous uranyl ion (UO2 2+) under ordinary environmental conditions. Herein, amino functionalized SBA-15 (APSS) was developed as a rapid and efficient sorbent for removal of U(VI) from the environment. The APSS sample was synthesized by grafting method and was characterized by SEM, NMR, SAXS, and N2 sorption/desorption isothermal experiments. The sorption of U(VI) by APSS was investigated under different conditions of pH, contact time, initial U(VI) concentration, ionic strength and solid–liquid ratio. The results show that the sorption of U(VI) by APSS is strongly dependent on pH but independent of ionic strength and solid–liquid ratios (m/V). The sorption is ultrafast with an equilibrium time of less than 30 min, and the sorption capacity is as large as 409 mg/g at pH 5.3 ± 0.1. Besides, the U(VI) sorption by APSS from extremely diluted solution and the desorption of U(VI) from APSS were also studied. It is found that 100 mg of APSS can almost completely remove the U(VI) ions from 4 L aqueous solution with the U(VI) concentration as low as 4.2 ppb and the sorbed U(VI) can be completely desorbed by 0.1 mol/L nitric acid. The results strongly reveal the high performance of the APSS material in the removal and preconcentration of U(VI) from the aqueous solution.  相似文献   

17.
18.
Ozone was used to oxidize graphene oxides (GO) to generate ozonated graphene oxides (OGO) with higher oxygen-containing functional groups. The as-prepared OGO was characterized by Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Based on the results of potentiometric acid-base titrations, the total carboxylic acid concentration on OGO surface was calculated to be 3.92 mmol/g, which was much higher than that on GO surface. The results of adsorption experiments indicated that the adsorption capacities of OGO for Sr(II) and U(VI) removal were improved significantly after ozonization.  相似文献   

19.
Journal of Radioanalytical and Nuclear Chemistry - In this study, a novel adsorbents, molybdenum disulfide-graphene oxide (MoS2–GO) composites, is prepared by one-step hydrothermal method and...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号