首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Application of NKF-6 zeolite for the removal of U(VI) from aqueous solution   总被引:1,自引:0,他引:1  
To better understand the application of NKF-6 zeolite as an adsorbent for the removal of U(VI) from radionuclides and heavy metal ions polluted water, herein, NKF-6 zeolite was employed to remove U(VI) at different experimental conditions. The influence of solid/liquid ratio, contact time, pH, ionic strength, humic substances and temperature on sorption of U(VI) to NKF-6 zeolite was investigated using batch technique under ambient conditions. The experimental results demonstrated that the sorption of U(VI) on NKF-6 zeolite was strongly dependent on pH. The sorption property of U(VI) was influenced by ionic strength at pH < 7.0, whereas was independent of ionic strength at pH > 7.0. The presence of fulvic acid or humic acid promoted the sorption of U(VI) on NKF-6 zeolite at low pH values while restrained the sorption at high pH values. The thermodynamic parameters (i.e., ΔS 0, ΔH 0, and ΔG 0) calculated from the temperature-dependent sorption isotherms demonstrated that the sorption process of U(VI) on NKF-6 zeolite was endothermic and spontaneous. At low pH values, the sorption of U(VI) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on NKF-6 zeolite surfaces, while inner-sphere surface complexation was the main sorption mechanism at high pH values. From the experimental results, one can conclude that NKF-6 zeolite can be used as a potential adsorbent for the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.  相似文献   

2.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

3.
Multiwalled carbon nanotubes (MWCNTs) have attracted multidisciplinary study because of their unique physicochemical properties. Herein, the sorption of U(VI) from aqueous solution to oxidized MWCNTs was investigated as a function of contact time, pH and ionic strength. The results indicate that U(VI) sorption on oxidized MWCNTs is strongly dependent on pH and ionic strength. The sorption of U(VI) is mainly dominated by surface complexation and cation exchange. The sorption of U(VI) on oxidized MWCNTs is quickly to achieve the sorption equilibrium. The sorption capacity calculated from sorption isotherms suggests that oxidized MWCNTs are suitable material in the preconcentration and solidification of U(VI) from large volumes of aqueous solutions.  相似文献   

4.
Sorption of U(VI) from aqueous solution to Na-attapulgite was investigated at different experimental chemistry conditions by using batch technique. The attapulgite sample was characterized by FTIR and XRD. Sorption of U(VI) on attapulgite was strongly dependent on pH and ionic strength. The sorption of U(VI) on attapulgite increased quickly with rising pH at pH < 6, and decreased with increasing pH at pH > 7. The presence of humic acid (HA) enhanced the sorption of U(VI) on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA with U(VI) on attapulgite surface. Sorption of U(VI) on attapulgite was mainly dominated by ion exchange and/or outer-sphere surface complexation at low pH values, whereas the sorption was attributed to the inner-sphere surface complexation or precipitation at high pH values. The sorption increased with increasing temperature and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on attapulgite was a spontaneous and endothermic process. The results indicate that attapulgite is a very suitable material for the preconcentration of U(VI) ions from large volumes of aqueous solutions.  相似文献   

5.
Bentonite has been studied extensively because of its strong sorption and complexation ability. In this study, GMZ bentonite (China) was studied as a potential sorbent for the removal of Th(IV) from aqueous solutions. The results indicate that the sorption of Th(IV) is strongly dependent on pH and ionic strength at pH <5, and is independent of ionic strength at pH >5. Outer-sphere surface complexation or ion exchange in inter-layer sites of the montmorillonite fraction of the GMZ bentonite may be the main sorption mechanism of Th(IV) onto GMZ bentonite at low pH values, whereas the sorption of Th(IV) at pH >5 is mainly dominated by inner-sphere surface complexation or surface precipitation. The presence of soil fulvic acid has a positive influence on the sorption of Th(IV) on GMZ bentonite at pH <5. The competition between Th(IV) with aqueous or surface adsorbed cation ions (e.g., herein Li+, Na+ and K+) and surface functional groups of GMZ bentonite is important for Th(IV) sorption on GMZ bentonite. The results of high sorption of Th(IV) suggest that the GMZ bentonite is a suitable backfill material in nuclear waste management.  相似文献   

6.
Graphene oxide nanosheets have attracted multidisciplinary attention due to their unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using a modified Hummers method and were characterized by TEM, AFM, Raman spectroscopy, XPS, FTIR spectroscopy, TG-DTA and acid-base titrations. The prepared few-layered graphene oxide nanosheets were used as adsorbents for the preconcentration of U(VI) ions from large volumes of aqueous solutions as a function of pH, ionic strength and temperature. The sorption of U(VI) ions on the graphene oxide nanosheets was strongly dependent on pH and independent of the ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation rather than by outer-sphere surface complexation or ion exchange. The abundant oxygen-containing functional groups on the surfaces of the graphene oxide nanosheets played an important role in U(VI) sorption. The sorption of U(VI) on graphene oxide nanosheets increased with an increase in temperature and the thermodynamic parameters calculated from the temperature-dependent sorption isotherms suggested that the sorption of U(vi) on graphene oxide nanosheets was an endothermic and spontaneous process. The maximum sorption capacities (Q(max)) of U(VI) at pH 5.0 ± 0.1 and T = 20 °C was 97.5 mg g(-1), which was much higher than any of the currently reported nanomaterials. The graphene oxide nanosheets may be suitable materials for the removal and preconcentration of U(VI) ions from large volumes of aqueous solutions, for example, U(VI) polluted wastewater, if they can be synthesized in a cost-effective manner on a large scale in the future.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs) have attracted intense multidisciplinary study because of their special physicochemical properties. In this paper, the effect of solid content, contact time, pH, temperature and humic acid on radionuclide (60Co(II)) on MWCNTs was studied by using batch technique. The results indicate that the sorption of Co(II) on MWCNTs can achieve sorption equilibration in short time and the kinetic sorption can be described by pseudo-second-order model well. The sorption of Co(II) on MWCNTs is strongly dependent on pH and independent of ionic strength, suggesting that the sorption of Co(II) on MWCNTs is mainly dominated by inner-sphere surface complexation rather than by outer-sphere surface complexation or ion exchange. The thermodynamic parameters calculated from the temperature-dependent sorption isotherms indicate that the sorption of Co(II) on MWCNTs was an endothermic and spontaneous process. The results of high sorption capacity of Co(II) suggest that MWCNTs can be used as efficient materials for the preconcentration of radiocobalt from large volumes of aqueous solutions in radionuclide polluted water.  相似文献   

8.
The sorption of UO2 2+ from aqueous solution on attapulgite was investigated as a function of contact time, solid content, pH, ionic strength, foreign ions, humic acid (HA), and fulvic acid (FA) under ambient conditions by using batch technique. The attapulgite sample was characterized by XRD and FTIR in detail. The results indicated that the sorption of UO2 2+ was strongly dependent on pH and ionic strength. The sorption of UO2 2+ on attapulgite increased quickly with rising pH at pH < 6.5, and decreased with increasing pH at pH > 6.5. The presence of HA or FA enhanced the sorption of UO2 2+ on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA/FA with UO2 2+ on attapulgite surface. Sorption of UO2 2+ on attapulgite was mainly dominated by ion-exchange or outer-sphere surface complexation at low pH values, but by inner-sphere surface complexation at high pH values. The results indicate that attapulgite is a very suitable adsorbent for the preconcentration and solidification of UO2 2+ from large volumes of aqueous solutions because of its negative surface charge and large surface areas.  相似文献   

9.
This paper examined the application of attapulgite as an adsorbent for the removal of Pb(II) from heavy metal-contaminated water under various conditions. The sorption results indicated that the sorption of Pb(II) on attapulgite was strongly dependent on ionic strength at pH < 7.0. Outer-sphere surface complexation or ion exchange may be the main sorption mechanism of Pb(II) on attapulgite at low pH values. No drastic difference of Pb(II) sorption was observed at pH 7.0–10.0, and the sorption at pH > 10.0 was mainly dominated by inner-sphere surface complexation. The sorption of Pb(II) on attapulgite was affected by foreign ions in solution at pH < 7.0, and was not affected by foreign ions at pH > 7.0. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) were evaluated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of Pb(II) on attapulgite was spontaneous and endothermic in nature.  相似文献   

10.
The attapulgite/iron oxide magnetic nanocomposites were prepared by coprecipitation method and characterized by scanning electron microscopy, X-ray diffraction, vibrating sample magnetometer and Fourier transform infrared sorption spectroscopy. The results of characterization showed that iron oxides were successfully deposited on the surfaces of attapulgite. The prepared magnetic nanocomposites were applied to remove radionuclide U(VI) ions from aqueous solutions by using batch technique and magnetic separation method. The results showed that the sorption of U(VI) on attapulgite/iron oxide magnetic composites was strongly dependent on ionic strength and pH at low pH values, and was independent of ionic strength at high pH values. The interaction of U(VI) with the magnetic nanocomposites was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, and was controlled by inner-sphere surface complexation or multinuclear surface complexation at high pH values. With increasing temperature, the sorption of U(VI) on attapulgite/iron oxide magnetic composites increased and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on the magnetic nanocomposites was a spontaneous and endothermic process. The high sorption capacity and easy magnetic separation of the attapulgite/iron oxide magnetic composites make the material as suitable sorbent in nuclear waste management.  相似文献   

11.
The sorption of radiocadmium on Ca-montmorillonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results demonstrated that the sorption of Cd(II) was dependent on ionic strength at pH < 9, and was independent of ionic strength at pH > 9. Outer-sphere surface complexation and/or ion exchange were the main mechanism of Cd(II) sorption on Ca-montmorillonite at low pH, whereas the sorption at high pH was mainly dominated via inner-sphere surface complexation. The sorption of Cd(II) on Ca-montmorillonite was dependent on foreign ions at low pH values, but was independent of foreign ions at high pH values. A positive effect of HA/FA on Cd(II) sorption was found at low pH values, whereas a negative effect was observed at high pH values. The thermodynamic parameters (i.e., ??H 0, ??S 0, ??G 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption process of Cd(II) on Ca-montmorillonite was spontaneous and endothermic.  相似文献   

12.
13.
A series of chitosan (CS)/multi-walled carbon nanotubes (MWCNTs) composite hydrogel beads with different MWCNTs contents are prepared via a solution blending method. The effects of MWCNTs on the morphology, structure and properties of chitosan beads have been investigated. Digital pictures show that the composite beads obtained are of good morphological characteristics, and the SEM micrographs indicate that the addition of MWCNTs into CS beads made the surface of the CS/MWCNTs hydrogel beads contain much larger wrinkles. Fourier transform infrared spectra (FTIR) show that the main chain of CS bead is not changed, but there are some electrostatic interactions between CS and MWCNTs, which lead to very significant changes in the crystallization behavior of CS and MWCNTs. The thermal stability of CS/MWCNTs composites at high temperatures is increased with the existence of MWCNTs, indicating a possible electrostatic interaction between MWCNTs and CS lattices to limit the motivation of CS. The adsorption capacity of CS beads doped with a lower percentage of MWCNTs (0.02 wt%) for acid fuchsin is 112.76 mg/g, higher than that of pure CS beads (35.62 mg/g).  相似文献   

14.
The carboxymethylated chitosan (CMC)/Na-bentonite (Na-Bt) composite membranes were prepared and throughly characterized. The Na-Bt/CMC mass ratio was optimized, and CB10 (membrane with Na-Bt/CMC mass ratio of 10%) was selected as the best membrane for U(VI) sorption. XPS analysis indicates that the main mechanism for UO22+ sorption onto CB10 is through inner-surface complexation. The sorption kinetics followed pseudo-second order model, indicating the chemisorption as the rate-controlling step. The U(VI) sorption on CB10 is endothermic and spontaneous, with the maximum mono-layer adsorption capacity of 115.6 mg/g at pH 5.0 and 298 K. Finally, the U(VI)-loaded CB10 can consecutively desorbed and reused for several cycles.  相似文献   

15.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

16.
The triphosphate-crosslinked magnetic chitosan resins (TPP-MCR) with a diameter range of 200–350 nm were synthesized for the adsorption of U(VI) and Th(IV) ions from aqueous solutions. The adsorption experiments were conducted in both mono-component systems with pure actinide solution and bi-component systems with different U/Th mass ratios. The maximum adsorption capacities in mono-component systems determined by Langmuir model were 169.5 and 146.8 mg g?1 for U(VI) and Th(IV), respectively. In bi-component systems, U(VI) and Th(IV) adsorption capacities were reduced significantly, and the combined sorption capacities were substantially lower (almost halved) compared to those obtained by the addition of sorption capacities using mono-component solutions, indicating that U(VI) and Th(IV) compete for the same sorption sites. Adsorption–desorption experiments for five cycles illustrated the feasibility of the repeated use of TPP-MCR for the adsorption of U(VI) and Th(IV) ions.  相似文献   

17.
The adsorption of Eu(III) on multiwalled carbon nanotubes (MWCNTs) as a function of pH, ionic strength and solid contents are studied by batch technique. The results indicate that the adsorption of Eu(III) on MWCNTs is strongly dependent on pH values, dependent on ionic strength at low pH values and independent of ionic strength at high pH values. Strong surface complexation and ion exchange contribute to the adsorption of Eu(III) on MWCNTs at low pH values, whereas surface complexation and surface precipitation are the main adsorption mechanism of Eu(III) on MWCNTs. The desorption of adsorbed Eu(III) from MWCNTs by adding HCl is also studied and the recycling use of MWCNTs in the removal of Eu(III) is investigated after the desorption of Eu(III) at low pH values. The results indicate that adsorbed Eu(III) can be easily desorbed from MWCNTs at low pH values, and MWCNTs can be repeatedly used to remove Eu(III) from aqueous solutions. MWCNTs are suitable material in the preconcentration and solidification of radionuclides from large volumes of aqueous solutions in nuclear waste management.  相似文献   

18.
The study was undertaken to evaluate the feasibility of functionalized multi-walled carbon nanotubes (MWCNTs) for the removal of UO2 2+ from aqueous solutions. The MWCNTs was treated by oxygen plasma and characterized by FTIR and XPS. The characterization indicates that MWCNTs is successfully functionalized of oxygen groups such as –COOH on its surface (denote as P-MWCNTs). The sorption of UO2 2+ from aqueous solution on P-MWCNTs was studied as a function of contact time, solid contents, pH, ionic strength and temperature under ambient conditions using batch experiment. Two simplified kinetic models of pseudo-first-order and pseudo-second-order were tested to determine kinetic parameters such as rate constants, equilibrium sorption capacities and related correlation coefficients for kinetic models of the sorption process. It can be seen that the UO2 2+ sorption on P-MWCNTs could be described more favorably by the pseudo-second-order model. The thermodynamic parameters (?G°, ?S°, ?H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of UO2 2+ on P-MWCNTs were an endothermic and spontaneous processes. The results of the present study suggest that P-MWCNTs can be used beneficially in treating industrial effluents containing radioactive and heavy metal ions.  相似文献   

19.
The mesoporous silicas (MCM-41 and MCM-48) are synthesized by hydrothermal method, which are characterized by XRD and BET techniques. The application of mesoporous silicas for the sorption of U(VI) from aqueous solution are studied by using batch technique under ambient condition. The effects of contact time, solid-to-liquid ratio (m/V), solution pH, ionic strength and temperature are determined, and the results indicate that the sorption of U(VI) to MCM-41 or MCM-48 are strongly dependent on pH values but independent of ionic strength. Compared with Langmuir model, the sorption isotherms can be simulated by Freundlich model well according to the high relative coefficients. The parameters for Langmuir and Freundlich sorption isotherms are calculated from the temperature at 298, 318 and 338 K, respectively, and the results suggest that the sorption of U(VI) on MCM-41 or MCM-48 is a spontaneous and exothermic process. In contrast to its sorption capacity for U(VI), MCM-48 is a suitable material for the preconcentration of U(VI) from large volumes of aqueous solutions.  相似文献   

20.
Different kinds of clay minerals have been studied extensively in the removal of radionuclides from large volumes of aqueous solutions because of their high sorption capacity. Herein, the Na-montmorillonite was characterized by using XRD and FTIR in detail. The sorption of 63Ni(II) from aqueous solution to montmorillonite as a function of pH, ionic strength, foreign ions, humic substances and temperature was studied by batch technique. The sorption of 63Ni(II) on montmorillonite achieved equilibration quickly. The sorption of 63Ni(II) to montmorillonite was strongly dependent on pH, and dependent on ionic strength at low pH and independent of ionic strength at high pH values. The sorption of 63Ni(II) on montmorillonite was enhanced at low pH in the presence of humic acid (HA), while a negative effect of HA on 63Ni(II) sorption was found at high pH values. At low pH values, the sorption of 63Ni(II) was attributed to outer-sphere surface complexation or ion exchange, whereas the sorption was dominated by inner-sphere surface complexation at high pH values. The montmorillonite sample is a suitable material in the preconcentration of radionuclides from large volumes and the material can be used as backfill material in nuclear waste repository.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号