首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The sorption of radionuclide 63Ni(II) on bentonite/iron oxide magnetic composites was investigated by batch technique under ambient conditions. The effect of contact time, solid content, pH, coexistent electrolyte ions, fulvic acid, and temperature on Ni(II) sorption to bentonite/iron oxide magnetic composites was examined. The results demonstrated that the sorption of Ni(II) was strongly dependent on pH and ionic strength at pH <8.0, and was independent of pH and ionic strength at high pH values. The sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The experimental data were well fitted by Langmuir model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Ni(II) on bentonite/iron oxide magnetic composites was an endothermic and spontaneous processes. The results show that bentonite/iron oxide magnetic composites are promising magnetic materials for the preconcentration and separation of radionickel from aqueous solutions in environmental pollution.  相似文献   

2.
Sorption of radionickel on attapulgite is studied as a function of contact time, ionic strength, pH and temperature. The results indicate that the sorption of Ni(II) on attapulgite is strongly ionic strength-dependent at pH <8, and independent of ionic strength at pH >8. Outer-sphere surface complexation or ion exchange contributes to Ni(II) sorption on attapulgite at pH <8, whereas the sorption of Ni(II) is mainly dominated by inner-sphere surface complexation at pH >8. The sorption of Ni(II) on attapulgite increases with increasing temperature, and the thermodynamic parameters (??H 0, ??G 0 and ??S 0) calculated from the temperature dependent sorption isotherms suggest that the sorption of Ni(II) on attapulgite is a spontaneous and endothermic process. The high sorption capacity of attapulgite suggests that attapulgite is a suitable material for the preconcentration and solidification of radionickel from large volumes of aqueous solutions.  相似文献   

3.
The graphene oxides(GOs) have attracted multidisciplinary study because of their special physicochemical properties. The high surface area and large amounts of oxygen-containing functional groups make GOs suitable materials for the efficient elimination of heavy metal ions from aqueous solutions. Herein the sorption of Ni(II) on GOs was studied using batch experiments, and the results showed that the sorption of Ni(II) is strongly dependent on p H and ionic strength at pH8, and independent of ionic strength at pH8. The sorption of Ni(II) is mainly dominated by outer-sphere surface complexation and ion exchange at low p H, and by inner-sphere surface complexation at high p H. The interaction of Ni(II) with GOs was also investigated by theoretical density functional theory(DFT) calculations, and the results show that the sorption of Ni(II) on GOs is mainly attributed to the –COH and –COC groups and the DFT calculations show that Ni(II) forms stable GO_Ni_triplet structure with the binding energy of -39.44 kcal/mol, which is in good agreement with the batch sorption experimental results. The results are important for the application of GOs as adsorbents in the efficient removal of Ni(II) from wastewater in environmental pollution cleanup.  相似文献   

4.
The sorption of Co(II) from aqueous solution on Na-rectorite was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Co(II) was strongly dependent on pH. At low pH the sorption was dominated by outer-sphere surface complexation or ion exchange, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on Na-rectorite was spontaneous and endothermic. Experimental results indicate that Na-rectorite is a suitable adsorbent for preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

5.
The sorption of radiocadmium on Ca-montmorillonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results demonstrated that the sorption of Cd(II) was dependent on ionic strength at pH < 9, and was independent of ionic strength at pH > 9. Outer-sphere surface complexation and/or ion exchange were the main mechanism of Cd(II) sorption on Ca-montmorillonite at low pH, whereas the sorption at high pH was mainly dominated via inner-sphere surface complexation. The sorption of Cd(II) on Ca-montmorillonite was dependent on foreign ions at low pH values, but was independent of foreign ions at high pH values. A positive effect of HA/FA on Cd(II) sorption was found at low pH values, whereas a negative effect was observed at high pH values. The thermodynamic parameters (i.e., ??H 0, ??S 0, ??G 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption process of Cd(II) on Ca-montmorillonite was spontaneous and endothermic.  相似文献   

6.
The sorption of Cd(II) from aqueous solution on MnO2 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on MnO2 was an spontaneous and endothermic process.  相似文献   

7.
Different kinds of clay minerals have been studied extensively in the removal of radionuclides from large volumes of aqueous solutions because of their high sorption capacity. Herein, the Na-montmorillonite was characterized by using XRD and FTIR in detail. The sorption of 63Ni(II) from aqueous solution to montmorillonite as a function of pH, ionic strength, foreign ions, humic substances and temperature was studied by batch technique. The sorption of 63Ni(II) on montmorillonite achieved equilibration quickly. The sorption of 63Ni(II) to montmorillonite was strongly dependent on pH, and dependent on ionic strength at low pH and independent of ionic strength at high pH values. The sorption of 63Ni(II) on montmorillonite was enhanced at low pH in the presence of humic acid (HA), while a negative effect of HA on 63Ni(II) sorption was found at high pH values. At low pH values, the sorption of 63Ni(II) was attributed to outer-sphere surface complexation or ion exchange, whereas the sorption was dominated by inner-sphere surface complexation at high pH values. The montmorillonite sample is a suitable material in the preconcentration of radionuclides from large volumes and the material can be used as backfill material in nuclear waste repository.  相似文献   

8.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

9.
In this article, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, solid content, pH, ionic strength, foreign ions, temperature and coexisting humic acid on the sorption behavior radionuclide 60Co(II) on illite. The results indicated that the sorption of Co(II) was strongly dependent on pH, ionic strength and temperature. At low pH, the sorption was dominated by outer-sphere surface complexation and ion exchange on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on illite was an endothermic and spontaneous process. The sorption test revealed that the illite can be as a cost-effective adsorbent suitable for pre-concentration of Co(II) from large volumes of aqueous solutions.  相似文献   

10.
The development of nuclear power releases large amounts of radionuclides into the natural environment. Herein, the sorption of radionuclide 63Ni on bentonite from Gaomiaozi county (Inner Mongolia, China) at different experimental conditions such as pH, contact time, ionic strength, foreign cations and anions, and temperatures were investigated by using batch technique. The results indicated that the sorption of 63Ni on the bentonite was quickly at first contact time and then increased slowly with increasing contact time. The sorption of 63Ni was strongly dependent on ionic strength at low pH values and independent of ionic strength at high pH values. The sorption of 63Ni on bentonite was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The Langmuir, Freundlich, and D–R models were applied to simulate the sorption isotherms of 63Ni at three different temperatures, and the thermodynamic parameters (i.e., ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 63Ni on bentonite was an endothermic and spontaneous process. Experimental results indicate that the bentonite is a suitable material for the preconcentration and solidification of 63Ni from large volume of solutions in radionickel pollution cleanup.  相似文献   

11.
In this work, Na-montmorillonite was used as a novel adsorbent for the sorption of Ni(II) from aqueous solutions. The sorption and desorption of Ni(II) on Na-montmorillonite was investigated as the function of pH, ionic strength, Ni(II) concentrations and temperature. The results indicated that the sorption of Ni(II) on Na-montmorillonite was strongly dependent on pH, ionic strength and temperature. The sorption of Ni(II) increases slowly from 22.1 to 51.4% at pH range 2–6.5, abruptly at pH 6.5–9, and at last maintains high level with increasing pH at pH > 9 in 0.1 mol/L NaNO3 solutions. The Ni(II) kinetic sorption on Na-montmorillonite was fitted by the pseudo-second-order model better than by the pseudo-first-order model and the experimental data implies that Ni(II) sorption on montmorillonite were mainly controlled by the film diffusion mechanism. The Langmuir, Freundlich and D–R models were used to simulate the sorption data at three different temperatures (298.15, 318.15 and 338.15 K) and the results indicated that Langmuir model simulates the experimental data better than Freundlich and D–R models. The sorption–desorption isotherm of Ni(II) on montmorillonite suggested that the sorption is irreversible. The irreversible sorption of Ni(II) on montmorillonite indicates that montmorillonite can be used to pre-concentration and solidification of Ni(II) from large volumes of solution and to storage Ni(II) ions stably.  相似文献   

12.
Herein, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR and XRD to determine its chemical functional groups and micro-structure. The removal of cobalt from aqueous solution to HAP was studied by batch technique as a function of various environmental parameters such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA), and temperature under ambient conditions. The results indicated that the sorption of Co(II) on HAP was strongly dependent on pH and ionic strength. The presence of FA enhanced the sorption of Co(II) on HAP at low pH, whereas reduced Co(II) sorption on HAP at high pH. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) calculated from the temperature dependent sorption isotherms indicated that the sorption process of Co(II) on HAP was spontaneous and endothermic. The sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The results suggest that the HAP is a suitable material in the preconcentration and solidification of Co(II) from large volumes of aqueous solutions.  相似文献   

13.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

14.
Bentonite was investigated to remove Ni(II) from aqueous solutions because of its strong sorption ability. Herein, bentonite was modified with sodium carboxymethylcellulose (CMC) and used as an adsorbent to remove Ni(II) from aqueous solutions. The results indicated that CMC-bentonite had higher sorption capacity than bare bentonite in the sorption of Ni(II) from aqueous solutions. Sorption of Ni(II) on CMC-bentonite was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, but by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic data calculated from temperature dependent sorption isotherms indicated that the sorption of Ni(II) to CMC-bentonite hybrids was an spontaneous process and enhanced with increasing temperature.  相似文献   

15.
Herein, the sorption properties of Eu(III) on Na-attapulgite were performed by using batch sorption experiments under different experimental conditions, such as contact time, pH, ionic strength, humic acid and temperatures. The results indicated that the sorption of Eu(III) on Na-attapulgite was strongly dependent on pH and temperature. At low pH values, the sorption of Eu(III) was influenced by ionic strength, whereas the sorption was not affected by ionic strength at high pH values. The sorption of Eu(III) was mainly dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The sorption of Eu(III) onto Na-attapulgite increased with increasing temperature. The Langmuir and Freundlich models were applied to simulate the sorption isotherms, and the results indicated that the Langmuir model simulated the sorption isotherms better than the Freundlich model. The thermodynamic parameters (∆G o, ∆S o, ∆H o) were calculated from the temperature dependent sorption isotherms at 293, 313 and 333 K, respectively, and the results indicated that the uptake of Eu(III) on Na-attapulgite was an endothermic and spontaneous process. The results of high Eu(III) sorption capacity on Na-attapulgite suggest that the attapulgite is a suitable material for the preconcentration and immobilization of Eu(III) ions from large volumes of aqueous solutions.  相似文献   

16.
The sorption of Cd(II) from aqueous solution on γ-Al2O3 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on γ-Al2O3 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich (D–R) models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on γ-Al2O3 was an spontaneous and endothermic process.  相似文献   

17.
To better understand the application of kaolinite as an adsorbent for the decontamination of Ni(II) from radionuclide contaminated aqueous systems, herein, the sorption behavior of radionuclide 63Ni(II) on kaolinite as a function of contacting time, pH, coexistent electrolyte ions, adsorbent concentration, fulvic acid and humic acid was investigated using batch technique. At low pH values, ion exchange and/or outer-sphere surface complexation was the main mechanism of Ni(II) sorption on kaolinite, whereas, the sorption of Ni(II) was dominated by inner-sphere surface complexation at high pH values. The presence of different electrolyte ions can enhance or inhibit the sorption of Ni(II) on kaolinite to some extent. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Ni(II) at three different temperatures of 288, 313 and 338 K. The thermodynamic parameters (i.e., ΔS°, ΔH°, and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption reaction of Ni(II) on kaolinite was endothermic and spontaneous. The findings in this present study demonstrates that the kaolinite can be used as a cost-effective adsorbent for the solidification and pre-concentration of Ni(II) from large volumes of aqueous systems.  相似文献   

18.
The sorption of Pb(II) from aqueous solution using NKF-5 zeolite was investigated by batch technique under ambient conditions. The NKF-5 zeolite sample was characterized by using FTIR and X-ray powder diffraction in detail. The sorption of Pb(II) was investigated as a function of pH, ionic strength, foreign ions, and humic substances. The results indicated that the sorption of Pb(II) on NKF-5 zeolite was strongly dependent on pH. The sorption was dependent on ionic strength at low pH, but independent of ionic strength at high pH. At low pH, the sorption of Pb(II) was dominated by outer-sphere surface complexation and ion exchange with H+ on NKF-5 zeolite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, one can conclude that NKF-5 zeolite has good potentialities for cost-effective preconcentration of Pb(II) from large volumes of aqueous solutions.  相似文献   

19.
In this study, the removal of radionuclide 60Co(II) from wastewater by Ca-rectorite was studied as a function of various environmental parameters such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances (HS) and temperature under ambient conditions. The results indicated that the sorption of Co(II) on Ca-rectorite was strongly dependent on pH and ionic strength. The Langmuir and Freundlich models were used to simulate the sorption isotherms of Co(II) at three different temperatures of 298.15, 318.15 and 338.15?K. The thermodynamic parameters ( $ \Updelta H^{0} ,\,\Updelta S^{0} $ and $ \Updelta G^{0} $ ) calculated from the temperature-dependent sorption isotherms indicated that the sorption process of Co(II) on Ca-rectorite was spontaneous and endothermic. At low pH, the sorption of Co(II) was dominated by outer-sphere surface complexation and ion exchange with Ca+/H+ on Ca-rectorite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that Ca-rectorite has good potentialities for cost-effective disposal of radiocobalt bearing wastewaters.  相似文献   

20.
Removal of Zn(II) from aqueous solution by natural halloysite nanotubes   总被引:1,自引:0,他引:1  
Clay minerals have been widely used in wastewater disposal due to their strong sorption and complexation ability towards various environmental pollutants. In this study, the removal of Zn(II) from aqueous solution by natural halloysite nanotubes (HNTs) was studied as a function of various solution chemistry conditions such as contact time, pH, ionic strength, coexisting electrolyte ions and temperature under ambient conditions. The results indicated that the removal of Zn(II) by HNTs was strongly dependent on pH and ionic strength. Langmuir and Freundlich models were used to simulate the sorption isotherms of Zn(II) at three different temperatures of 293, 313 and 333 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the removal process of Zn(II) by HNTs was endothermic and spontaneous. At low pH, the removal of Zn(II) was dominated by outer-sphere surface complexation and/or cation exchange with Na+/H+ on HNT surfaces, whereas inner-sphere surface complexation was the main removal mechanism at high pH. From the experimental results, one can conclude that HNTs may have a good potentiality for the disposal of Zn(II)-bearing wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号