首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a neutron-scattering study to characterize the ordering and local dynamics of spherical micelles formed by the triblock copolymer polyethylene oxide (PEO)--polypropylene oxide (PPO)--polyethylene oxide (Pluronic) in aqueous solution. The study focuses on two Pluronic species, F68 and F108, that have the same weight fraction of PEO but that differ in chain length by approximately a factor of 2. At sufficiently high concentration, both species undergo a sequence of phase changes with increasing temperature from dissolved chains to micelles with liquid-like order to a cubic crystal phase and finally back to a micelle liquid phase. A comparison of the phase diagrams constructed from small-angle neutron scattering indicates that crystallization is suppressed for shorter chain micelles due to fluctuation effects. The intermediate scattering function I(Q,t)I(Q,0) determined by neutron spin echo displays a line shape with two distinct relaxations. Comparisons between I(Q,t)I(Q,0) for fully hydrogenated F68 chains in D2O and for F68 with deuterated PEO blocks reveal that the slower relaxation corresponds to Rouse modes of the PPO segments in the concentrated micelle cores. The faster relaxation is identified with longitudinal diffusive modes in the PEO corona characteristic of a polymer brush.  相似文献   

2.
We present a scattering study of a selectively deuterated micelle-forming diblock copolymer. The copolymer comprises a partially deuterated polystyrene (d,h-PS) block and an imidazolium-functionalized PS (IL) block. In toluene solutions, the copolymers assemble into elongated micelles where the IL block forms the micelle core. Through dynamic light scattering (DLS) measurements, we obtain the overall size of the micelles. In our small-angle neutron scattering (SANS) studies, we use contrast matching to characterize the IL core and the PS shell of the micelles independently. The PS block forming the micelle shell exhibits either a starlike or brushlike conformation depending upon the size of the core to which it is tethered. We find the IL block to be in an extended conformation, driving the formation of slightly elongated and relatively stiff micelle cores. The elongated micelle core cross-sectional radius and length depend linearly on the length of the IL block. We find that the micelles can sequester a few water molecules for each IL repeat unit; the addition of water slightly increases the cross section of the elongated micelles.  相似文献   

3.
The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.  相似文献   

4.
The formation of micelles in aqueous mixtures of a carbohydrate-based bolaamphiphile and sodium dodecyl sulfate (SDS) is investigated by surface tension and small-angle neutron scattering. The obtained values of critical micelle concentration (CMC) are analyzed within the framework of regular solution theory. Synergetic interactions between the bolaamphiphile and SDS are observed (parameter beta is negative; a minimum in the plot CMC vs composition). SANS data are collected for mixtures containing protonated and deuterated SDS. This gives us the possibility to conclude that mixed micelles with a homogeneous distribution of surfactant molecules within the micelle are formed. The shape of the micelles is found to be slightly oblate.  相似文献   

5.
Electron paramagnetic resonance, viscosity, and small-angle neutron scattering (SANS) measurements have been used to study the interaction of mixed anionic/nonionic surfactant micelles with the polyampholytic protein gelatin. Sodium dodecyl sulfate (SDS) and the nonionic surfactant dodecylmalono-bis-N-methylglucamide (C12BNMG) were chosen as "interacting" and "noninteracting" surfactants, respectively; SDS micelles bind strongly to gelatin but C12BNMG micelles do not. Further, the two surfactants interact synergistically in the absence of the gelatin. The effects of total surfactant concentration and surfactant mole fraction have been investigated. Previous work (Griffiths et al. Langmuir 2000, 16 (26), 9983-9990) has shown that above a critical solution mole fraction, mixed micelles bind to gelatin. This critical mole fraction corresponds to a micelle surface that has no displaceable water (Griffiths et al. J. Phys. Chem. B 2001, 105 (31), 7465). On binding of the mixed micelle, the bulk solution viscosity increases, with the viscosity-surfactant concentration behavior being strongly dependent on the solution surfactant mole fraction. The viscosity at a stoichiometry of approximately one micelle per gelatin molecule observed in SDS-rich mixtures scales with the surface area of the micelle occupied by the interacting surfactant, SDS. Below the critical solution mole fraction, there is no significant increase in viscosity with increasing surfactant concentration. Further, the SANS behavior of the gelatin/mixed surfactant systems below the critical micelle mole fraction can be described as a simple summation of those arising from the separate gelatin and binary mixed surfactant micelles. By contrast, for systems above the critical micelle mole fraction, the SANS data cannot be described by such a simple approach. No signature from any unperturbed gelatin could be detected in the gelatin/mixed surfactant system. The gelatin scattering is very similar in form to the surfactant scattering, confirming the widely accepted picture that the polymer "wraps" around the micelle surface. The gelatin scattering in the presence of deuterated surfactants is insensitive to the micelle composition provided the composition is above the critical value, suggesting that the viscosity enhancement observed arises from the number and strength of the micelle-polymer contact points rather than the gelatin conformation per se.  相似文献   

6.
Morphology and structure of aqueous block copolymer solutions based on polystyrene-block-poly(ethylene oxide) (PS-b-PEO) of two different compositions, a cationic surfactant, cetyl pyridinium chloride (CPC), and either platinic acid (H2PtCl6.6H2O) or Pt nanoparticles were studied using a combination of analytical ultracentrifugation (AUC), transmission electron microscopy (TEM), and small angle neutron scattering (SANS). These studies combining methods contributing supplemental and analogous structural information allowed us to comprehensively characterize the complex hybrid systems and to discover an isotope effect when H2O was replaced with D2O. In particular, TEM shows formation of both micelles and larger aggregates after incorporation of platinic acid, yet the amount of aggregates depends on the H2PtCl6.6H2O concentration. AUC reveals the presence of micelles and micellar clusters in the PS-b-PEO block copolymers solution and even larger (supermicellar) aggregates in hybrids (with CPC). Conversely, SANS applied to D2O solutions of the similar species indicates that micelles are spherical and no other micellar species are found in block copolymer solutions. To reconcile the SANS and AUC data, we carried out AUC examination of the corresponding D2O block copolymer solutions. These measurements demonstrate a pronounced isotope effect on micelle aggregation and micelle size, i.e., no micelle aggregation in D2O solutions, revealing good agreement of AUC and SANS data.  相似文献   

7.
Small angle neutron scattering (SANS) measurements of D2O solutions (0.1 M) of sodium cholate (NaC) and sodium deoxycholate (NaDC) were carried out atT= 298 K. Under compositions very much above the critical micelle concentration (CMC), the bile salt micelle size growths were monitored by adopting Hayter-Penfold type analysis of the scattering data. NaC and NaDC solutions show presence of correlation peaks atQ = 0.12 and 0.1 ?-1 respectively. Monodisperse ellipsoids of the micelles produce best fits. For NaC and NaDC systems, aggregation number (9.0, 16.0), fraction of the free counterions per micelle (0.79, 0.62), semi-minor (8.0 ?) and semi-major axes (18.4, 31.7 ?) values for the micelles were deduced. Extent of micellar growth was studied using ESR correlation time measurements on a suitable probe incorporating NaC and NaDC micelles. The growth parameter (axial ratio) values were found to be 2.3 and 4.0 for NaC and NaDC systems respectively. The values agree with those of SANS.  相似文献   

8.
The structure of micelles formed by a four component water-in-oil nonionic microemulsion surfactant polyoxyethene (20) sorbitan monoleate (Tween 80), sorbitan monolaurate (Span 20) at ethyl oleate and deuterated water interface have been probed by small-angle neutron scattering (SANS). The total surfactant concentration in each of the samples studied (Tween 80: Span 20) is fixed at 3:2. The deuterated water content is variable at 5–60% w/w. The experimental SANS data from all the seven samples are fit well by spherical micelles interacting with hard sphere potential. Increased deuterated water leads to spherical to lamellar and rod-like micelle geometry featured in the SANS scattering data. The observed change in micelle geometry supports the characterization of phase transition between the self-assembled micelles of the nonionic microemulsion.   相似文献   

9.
Micellization behavior of amphiphilic diblock copolymers with strong acid groups, poly(hydrogenated isoprene)-block-poly(styrenesulfonate), was investigated by small-angle neutron scattering (SANS). We have reported previously (Kaewsaiha, P.; Matsumoto, K.; Matsuoka, H. Langmuir 2005, 21, 9938) that this strongly ionic amphiphilic diblock copolymer shows almost no surface activity but forms micelles in water. In this study, the size, shape, and internal structures of the micelles formed by these unique copolymers in aqueous solution were duly investigated. The SANS data were well described by the theoretical form factor of a core-shell model and the Pedersen core-corona model. The micellar shape strongly depends on the hydrophobic chain length of the block copolymer. The polymer with the shortest hydrophobic chain was suggested to form spherical micelles, whereas the scattering curves of the longer hydrophobic chain polymers showed a q-1 dependence, reflecting the formation of rodlike micelles. Furthermore, the addition of salt at high concentration also induced the sphere-to-rod transition in micellar shape as a result of the shielding effect of electrostatic repulsion. The corona thickness was almost constant up to the critical salt concentration (around 0.2 M) and then decreased with further increases in salt concentration, which is in qualitatively agreement with existing theories. The spherical/rodlike micelle ratio was also constant up to the critical salt concentration and then decreased. The micelle size and shape of this unique polymer could be described by the common concept of the packing parameter, but the anomalously stable nature of the micelle (up to 1 M NaCl) is a special characteristic.  相似文献   

10.
Highly concentrated micelles in CTAB/NaSal solutions with a fixed salt/surfactant ratio of 0.6 have been studied using Small Angle Neutron Scattering (SANS) as a function of temperature and concentration. A worm-like chain model analysis of the SANS data using a combination of a cylindrical form factors for the polydisperse micellar length, circular cross-sectional radius with Gaussian polydispersity, and the structure factor based on a random phase approximation (RPA) suggests that these micelle solutions have a worm-like micellar structure that is independent of the concentration and temperature. The size of the micelle decreases monotonically with increasing temperature and increases with concentration. These observations indicate that large micelles are formed at low temperature and begin to break up to form smaller micelles with increasing temperature.  相似文献   

11.
Tracer particle microrheology using diffusing wave spectroscopy-based microrheology is demonstrated to be a useful method to study the dynamics of aqueous Pluronic? F108 solutions, which are viewed as solutions of repulsive soft spheres. The measured zero-shear microviscosity of noncrystallizing micellar dispersions indicates micelle corona dehydration upon increasing temperature. Colloidal sphere thermal motion is shown to be exquisitely sensitive to the onset of crystallization in these micellar dispersions. High temperature dynamics are dominated by an apparent soft repulsive micelle-micelle interaction potential indicating the important role played by lubrication forces and ultimately micelle corona interpenetration and compression at sufficiently high concentrations. The measured microscopic viscoelastic storage and loss moduli are qualitatively similar to those experimentally observed in mechanical measurements on colloidal dispersions and crystals, and calculated from mode coupling theory of colloidal suspensions. The observation of subdiffusive colloidal sphere thermal motion at short time-scales is strong evidence that the observed microscopic viscoelastic properties reflect the dynamics of individual micelles rather than a dispersion of micellar crystallites.  相似文献   

12.
SANS from Pluronic P85 in d-water   总被引:2,自引:0,他引:2  
Small-angle neutron scattering (SANS) has been used to investigate Pluronic P85 (EO26PO40EO26) copolymer in deuterated water. A range of P85 fractions were measured for a wide sample temperature window. A rich phase behavior is reported. Unimers were observed below the critical micelle formation condition. At fixed P85 fraction, a number of micellar phases were observed upon increasing temperature; first spherical micelles, then cylindrical micelles, then lamellar micelles. At the highest temperature, a demixed lamellae phase was observed. Analysis of the SANS data consisted in fits to an empirical Guinier-Porod model that was appropriate for data fitting in the various phases at low P85 fractions. When the P85 fraction increased, an inter-particle structure factor was included to analyze SANS data from concentrated spherical micelles. At high P85 fractions, paracrystalline structures were observed as evidenced by an enhanced inter-particle interaction peak. A phase diagram for P85/d-water was obtained showing the various phases. Focusing on the spherical micelles phase for one sample composition, a core-shell model was used to fit SANS data and obtain sizes and scattering length densities. Using material balance equations, information such as the aggregation number (i.e., number of Pluronic macromolecules per micelle) and the number of hydration water molecules in the shell region are determined.  相似文献   

13.
The structure of micelles formed by nonionic polyoxyethylene alkyl ether nonionic surfactants, C n E m , in the room-temperature ionic liquid, ethylammonium nitrate (EAN), has been determined by small-angle neutron scattering (SANS) as a function of alkyl and ethoxy chain length, concentration, and temperature. Micelles are found to form for all alkyl chains from dodecyl through to octadecyl. Dodecyl-chained surfactants have high critical micelle concentrations, around 1 wt%, and form weakly structured micelles. Surfactants with longer alkyl chains readily form micelles in EAN. The observed micelle structure changes systematically with alkyl and ethoxy chain length, in parallel with observations in aqueous solutions. Decreasing ethoxy chain length at constant alkyl chain length leads to a sphere to rod transition. These micelles also grow into rods with increasing temperature as their cloud point is approached in EAN.  相似文献   

14.
The surface activity and the rheological properties of aqueous solutions of the amphiphilic block copolymer poly(n-butyl acrylate)-block-poly(acrylic acid) (PnBA-b-PAA) were studied as a function of the degree of neutralization, alpha, of the poly(acrylic acid) block. Although the block copolymer spontaneously forms spherical micelles having a stretched PAA corona and a collapsed PnBA core in water for alpha > 0.1, the solutions do not exhibit any surface activity at this degree of neutralization. Cryo-TEM micrographs show that the radii of the hydrophobic core of the largest micelles are as long as the length of the hydrophobic chain. The micelles, however, have a broad size distribution, and on average, as shown by SANS, the micelles are only about half as long. At concentrations as low as 1 wt %, the solutions exhibit highly viscoelastic behavior and have a yield stress value depending on alpha. The globular micelles are highly ordered in the bulk phase, and the viscoelastic properties are a result of the dense packing of the micelles. The addition of salt or cationic surfactants dramatically decreases the viscosity of the solution. The observed properties seem to be due to electrostatic interactions between the PAA chains of the micelles.  相似文献   

15.
Hybrid polyion complex (HPIC) micelles are nanoaggregates obtained by complexation of multivalent metal ions by double hydrophilic block copolymers (DHBC). Solutions of DHBC such as the poly(acrylic acid)-block-poly(acrylamide) (PAA-b-PAM) or poly(acrylic acid)-block-poly(2-hydroxyethylacrylate) (PAA-b-PHEA), constituted of an ionizable complexing block and a neutral stabilizing block, were mixed with solutions of metal ions, which are either monoatomic ions or metal polycations, such as Al(3+), La(3+), or Al(13)(7+). The physicochemical properties of the HPIC micelles were investigated by small angle neutron scattering (SANS) and dynamic light scattering (DLS) as a function of the polymer block lengths and the nature of the cation. Mixtures of metal cations and asymmetric block copolymers with a complexing block smaller than the stabilizing block lead to the formation of stable colloidal HPIC micelles. The hydrodynamic radius of the HPIC micelles varies with the polymer molecular weight as M(0.6). In addition, the variation of R(h) of the HPIC micelle is stronger when the complexing block length is increased than when the neutral block length is increased. R(h) is highly sensitive to the polymer asymmetry degree (block weight ratio), and this is even more true when the polymer asymmetry degree goes down to values close to 3. SANS experiments reveal that HPIC micelles exhibit a well-defined core-corona nanostructure; the core is formed by the insoluble dense poly(acrylate)/metal cation complex, and the diffuse corona is constituted of swollen neutral polymer chains. The scattering curves were modeled by an analytical function of the form factor; the fitting parameters of the Pedersen's model provide information on the core size, the corona thickness, and the aggregation number of the micelles. For a given metal ion, the micelle core radius increases as the PAA block length. The radius of gyration of the micelle is very close to the value of the core radius, while it varies very weakly with the neutral block length. Nevertheless, the radius of gyration of the micelle is highly dependent on the asymmetry degree of the polymer: if the neutral block length increases in a large extent, the micelle radius of gyration decreases due to a decrease of the micelle aggregation number. The variation of the R(g)/R(h) ratio as a function of the polymer block lengths confirms the nanostructure associating a dense spherical core and a diffuse corona. Finally, the high stability of HPIC micelles with increasing concentration is the result of the nature of the coordination complex bonds in the micelle core.  相似文献   

16.
Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies.  相似文献   

17.
The interaction of a partially fluorinated alkyl sulfate, sodium 1H,1H,2H,2H-perfluorooctyl sulfate (C6F13CH2CH2OSO3Na), with the polyampholyte gelatin has been examined in aqueous solution using surface tension and small-angle neutron scattering (SANS). The 19F chemical shift of each fluorine environment in the surfactant is unaltered by the addition of gelatin, indicating that there is no contact between the gelatin and the fluorocarbon core of the micelle. The chemical shift of the two methylene groups closest to the headgroup is altered when gelatin is present, disclosing the location of the polymer. The critical micelle concentration (cmc) of the surfactant, cmc = 17+/-1 mM, corresponds to an effective alkyl chain (CnH2n+1) length of n = 11. In the presence of gelatin, the cmc is substantially reduced as expected, cmc(1) = 4+/-1 mM, which is also consistent with an effective alkyl chain length of n = 11. In the presence of the fluorosurfactant, the monotonic decay of the SANS from the gelatin-only system is replaced by a substantial peak at an intermediate Q value mirroring the micellar interaction. At low ionic strengths, the gelatin/micelle complex can be described by an ellipsoid. At higher ionic strengths, the electrostatic interaction between the micelles is screened and the peak in the gelatin scattering disappears. The correlation length describing the network structure decreases with increasing SDS concentration as the bound micelles promote a collapse of the network.  相似文献   

18.
The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.  相似文献   

19.
Elastic and quasi elastic neutron scattering investigations, using the small angle neutron scattering (SANS) and neutron spin echo (NSE) techniques, respectively, were performed in order to study the static and dynamic single chain behaviour in a binary blend of low molecular mass deuterated poly(dimethylsiloxane) (d-PDMS) and protonated poly(ethylmethylsiloxane) (p-PEMS) at the critical composition c. Since the single chain observation requires that only a small amount of one of both components is labelled, the d-PDMS/p-PEMS system was modified in such a way that the major part of the protonated PEMS component was replaced by the corresponding deuterated material. Although the de-mixing of the PEMS isotopes occurs far below the de-mixing of the PDMS/PEMS system the resulting chemically binary d-PDMS/d-PEMS/p-PEMS blend with the volume composition 0.5/0.425/0.075 is strictly speaking a ternary system. This complication had to be taken into account, in particular with respect to the correct evaluation of the SANS data.The careful analysis of the SANS curves allows one to determine all three thermodynamic interaction parameters with reasonable reliability and gives evidence that the radii of gyration agree with those, which were determined in corresponding isotopic PDMS and PEMS blends. This is in contrast to the observation on real binary PDMS/PEMS blends at c, where the collective conformational properties exhibit a considerable chain expansion. The NSE data of the ternary system follow completely the predictions of the Rouse model, which describes the dynamics of a dense low molecular mass polymeric system in a single chain approximation. The experimental observations are also in contrast to the results of former NSE measurements on binary PDMS/PEMS blends, where a transition from Rouse behaviour at short times to a much weaker relaxation at longer times became obvious.The results of the static and dynamic single chain behaviour presented here confirm the results of a computer simulation on a low molecular mass binary blend at the critical concentration, where explicitly the pure single chain behaviour was probed and no indications for chain expansion and deviations from the Rouse dynamics were found.Dedicated to Prof. Dr. Erhard W. Fischer on the occasion of the 75th anniversary of his birthday.  相似文献   

20.
In aqueous solution, the micellization and microenvironment characteristics of the micelle assemblies of three anionic surfactants, sodium 1-(n-alkyl)naphthalene-4-sulfonates (SANS), have been investigated by steady-state fluorescence and time-resolved fluorescence decay techniques using pyrene, Ru(bpy)3(2+), and 1,6-diphenyl-1,3,5-hexatriene as fluorescence probes. The critical micelle concentrations (cmc's), effective carbon atom numbers (neff's), hydrophilic-lipophilic balances (HLBs), mean micelle aggregation numbers, micropolarities, and microviscosities of these surfactant micelles have been determined. The logarithmic cmc of the alkylnaphthalene sulfonates decreases linearly with an increase in the neff. The logarithmic aggregation number of the alkylnaphthalene sulfonates increases linearly with an increase in the neff. However, in contrast to the alkylsufonates and the alkylbenzene sulfonates, the aggregation for these alkylnaphthalene sulfonate molecules is less sensitive to the increase in the neff. The micropolarity of these alkylnaphthalene sulfonate micelles is less sensitive to the increase in the alkyl chain length and is lower than that of sodium dodecyl sulfate (SDS). The microviscosity of these alkylnaphthalene sulfonate micelles increases with an increase in the alkyl chain length and is lower than those of nonionic surfactants and zwitterionic surfactants. These results suggest that naphthyl rings have a notable effect on the micellization of SANS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号