首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chelating copolymer (HQDMA) has been synthesized through copolymerization of 8-hydroxyquinoline and dimethylolacetone monomers in the presence of base as a catalyst. This newly developed copolymer ligand (H2L) has been used to prepare a series of five polymeric chelates (ML) by using Zn(II), Cu(II), Ni(II), Co(II) and Mn(II) metal ions. Both the parent ligand and its metal chelates have been systemically investigated in detail to elucidate the chemical structure and thermal behaviour by elemental analyses, spectral (IR and electronic) characterization, number-average molecular mass determination and thermogravimetric analysis (TG). In addition to these, magnetic susceptibility measurements have also been carried out for studying geometry and metal-ligand stoichiometry of polymeric chelates. The chemical structure of polychelates on the basis of elemental and IR characterization suggests that the bidentate ligand (H2L) coordinates to metal ions through oxygen atom of the phenolic hydroxyl group by replacing hydrogen atom and nitrogen of the quinoline ring. The studies of magnetic moments and electronic spectra reveal that all polychelates with octahedral geometry are paramagnetic in nature except that of Zn(II) chelate, which is diamagnetic. The thermogravimetric analysis of parent ligand and its metal chelates have shown remarkable difference in mode of thermal decomposition and their thermal stabilities. The kinetic parameter, energy of activation (E a) of thermal decomposition has also been estimated by Broido method.  相似文献   

2.
The cobalt(II) and nickel(II) chelates of Schiff bases, derived by condensing 4-butyryl-3-methyl-1-phenyl-2-pyrazolin-5-one (BMPP) with o-, m-, p-phenylenediamine, benzidine, and ethylenediamine have been synthesized and characterized by elemental analyses, thermogravimetric analyses (TGA), conductance data, magnetic measurements, IR, 1H NMR, 13C NMR, mass, and electronic spectroscopies. Each of the Schiff bases was an ONNO donor to metal forming chelates formulated as [M(L)(H2O)2] n with M = Ni(II) and Co(II) and L is the di-anion of the Schiff base. The monomeric (n = 1) and dimeric (n = 2) species of these metal chelates, based on available evidence, are suggested.  相似文献   

3.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

4.
The metal chelates of 1-acetylpyridinium chloride-4-phenyl-3-thiosemicarbazide [(APTS)]+Cl? of the type [M(APTS)X2]+ Cl? (M = Co(II), Ni(II), Cu(II), Zn(II) or Cd(II); X = Cl, Br or 12SO4) have been prepared and characterized on the basis of elemental analysis, molar conductance, IR, electronic spectra and magnetic studies. IR spectral studies showed that the ligand coordinates via thioketo and NLH groups. Magnetic and spectral studies suggest a tetrahedral structure for Ni(II), pseudo-tetrahedral for Co(II) and square planar and/or distorted tetrahedral for Cu(II) chelates.  相似文献   

5.
Co(II), Ni(II), Cu(II), and Zn(II) complexes have been prepared with Schiff bases derived from 3-formyl-2-mercaptoquinoline and substituted anilines. The prepared Schiff bases and chelates have been characterized by elemental analysis, molar conductance, magnetic susceptibilities, electronic, IR, 1H-NMR, ESR, cyclic voltammetry, FAB-mass, and thermal studies. The complexes have stoichiometry of the type ML2 · 2H2O coordinating through azomethine nitrogen and thiolate sulfur of 2-mercapto quinoline. An enhancement in fluorescence has been noticed in the Zn(II) complexes whereas quenching occurred in the other complexes. The ligands and their metal complexes have been screened in vitro for antibacterial and antifungal activities by MIC methods with biological activity increasing on complexation. Cu(II) complexes show greater bacterial than fungicidal activities. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of the ligands and their corresponding complexes. Only four compounds have exhibited potent cytotoxic activity against Artemia salina; the other compounds were almost inactive for this assay.  相似文献   

6.
Symmetric 1,1′‐dimethylferrocene derived Schiff‐base ligands have been prepared by the condensation reaction of 1,1′‐diacetylferrocene with 2‐aminopyrazine, 2‐aminopyridine and 2‐aminothiazole respectively. Their transition metal chelates, of the type [M(L)]Cl2 [M = Cu(II)] and [M(L)(Cl2)] [M = Co(II), Ni(II) and Zn(II)] have been prepared. The synthesized Schiff‐base ligands and their metal(II) chelates have been characterized by their physical, analytical and spectral data. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
Neutral tetradentate N2O2 type complexes of Cu(II), Ni(II), Mn(II), Zn(II) and VO(II) have been synthesised using a Schiff base formed by the condensation of o-phenylenediamine with acetoacetanilide in alcohol medium. All the complexes were characterised on the basis of their microanalytical data, molar conductance, magnetic susceptibility, IR, UV-Vis1H NMR and ESR spectra. IR and UV-Vis spectral data suggest that all the complexes are square-planar except the Mn(II) and VO(II) chelates, which are of octahedral and square pyramidal geometry respectively. The monomeric and neutral nature of the complexes was confirmed by their magnetic susceptibility data and low conductance values. The ESR spectra of copper and vanadyl complexes in DMSO solution at 300 K and 77 K were recorded and their salient features are reported.  相似文献   

8.
New Schiff base chelates of Cu(II), Co(II), Ni(II) and Zn(II) derived from benzil-2,4-dinitro-phenylhydrazone with aniline have been synthesised. Microanalytical data, molar conductance, and magnetic susceptibility values have been obtained, and IR,1H NMR,13C NMR, UV-Vis, CV and EPR spectral studies have been carried out to suggest tentative structures for the complexes  相似文献   

9.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) 4-methylphthalates were investigated and their composition, solubility in water at 295 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with molar ratio of metal to organic ligand of 1.0:1.0 and general formula: M [ CH3C6H3(CO2)2nH2o (n=1-3) were recorded and their decomposition in air were studied. During heating the hydrated complexes are dehydrated in one (Mn, Co, Ni, Zn, Cd) or two steps (Cu) and next the anhydrous complexes decompose to oxides directly (Cu, Zn), with intermediate formation of carbonates (Mn, Cd), oxocarbonates (Ni) or carbonate and free metal (Co). The carboxylate groups in the complexes studied are mono- and bidentate (Co, Ni), bidentate chelating and bridging (Zn) or bidentate chelating (Mn, Cu, Cd). The magnetic moments for paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II) attain values 5.92, 5.05, 3.36 and 1.96 M.B., respectively. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A novel macrocyclic tetradentate ligand 1,5,8,12-tetraaza-2,4,9,11-tetraphenyl-6,7:13,14-dibenzocyclohexadeca- 1,4,8,11-tetraene (L) has been synthesized. Cobalt(II), nickel(II), and copper(II) complexes of this ligand have been prepared and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, and mass, IR, electronic, and ESR spectral studies. The molar conductance measurements correspond to a nonelectrolytic nature for all the complexes, which can be formulated as [M(L)X2] (where M = Co(II), Ni(II), and Cu(II); X = Cl and NO3). On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned to the Co(II) and Ni(II) complexes, whereas a tetragonal geometry was found for the Cu(II) complexes. The investigated compounds and uncomplexed metal salts and the ligands were tested against bacterial species like Sarcina lutea, Escherchia coli, and Staphylococcus aureus. The metal complexes have higher activity than the free ligand and metal salts. The text was submitted by the authors in English.  相似文献   

11.
Co(II), Ni(II) and Cu(II) chloro complexes of benzilic hydrazide (BH) have been synthesized. Also, reaction of the ligand (BH) with several copper(II) salts, including NO3 ?, AcO?, and SO4 ? afforded metal complexes of the general formula [CuLX(H2O) n nH2O, where X is the anion and n = 0, 1 or 2. The newly synthesized complexes were characterized by elemental analysis, mass spectra, molar conductance, UV–vis, IR spectra, magnetic moment, and thermal analysis (TG/DTG). The physico-chemical studies support that the ligand acts as monobasic bidentate towards metal ion through the carbonyl and hydroxyl oxygen atoms. The spectral data revealed that the geometrical structure of the complexes is square planar for Cu (II) complexes and tetrahedral for Co(II) and Ni(II) complexes. Structural parameters of the ligand and its complexes have been calculated. The ligand and its metal complexes are screened for their antimicrobial activity. The catalytic activities of the metal chelates have been studied towards the oxidative decolorization of AB25, IC and AB92 dyes using H2O2. The catalytic activity is strongly dependent on the type of the metal ion and the anion of Cu(II) complexes.  相似文献   

12.
Conditions for the preparation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II)3,3-dimethylglutarates were investigated and their quantitative composition, solubility in water at 293 K and magnetic moments were determined. IR spectra and powder diffraction patterns of the complexes prepared with general formula MC7H10O4nH2O (n=0−2) were recorded and their thermal decomposition in air were studied. During heating the hydrated complexes of Mn(II),Co(II), Ni(II) and Cu(II) are dehydrated in one step and next all the anhydrous complexes decompose to oxides directly (Mn, Co, Zn) or with intermediate formation free metal (Ni,Cu) or oxocarbonates (Cd). The carboxylate groups in the complexes studied are bidentate. The magnetic moments for the paramagnetic complexes of Mn(II), Co(II), Ni(II) and Cu(II)attain values 5.62, 5.25, 2.91 and 1.41 M.B., respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Solid chelates derived from some alkaline earth and transition metal complexes with ampicillin (Hamp, a) and amoxicillin (Hamox, b) were synthesized and characterized using elemental analysis, molar conductivity, IR, magnetic susceptibility, and thermogravimetric studies. Both drugs behave as tetradentate ligands coordinating to metal through amino, imino, and carboxylate as well as through β-lactamic carbonyl. All chelates have octahedral geometry except Cu(II) complexes which have square planar structure and uranium has pentagonal bipyramidal coordination. 1H- and 13C-NMR of the Zn(II) and UO2(VI) chelates are compared with the free ligands. The antimicrobial activity of the prepared chelates was determined.  相似文献   

14.
A series of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of azo-compounds containing hydroxyl quinoline moiety have been synthesized and characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic and ESR spectral studies. The results revealed the formation of 1:1 and 1:2 (L:M) complexes. The molar conductance data reveal that the chelates are nonelectrolyte. IR spectra indicate that the azodyes behave as monobasic bidentate or dibasic tetradentate ligands through phenolate or carboxy oxygen, azo N for 1:1 (L:M) complexes beside phenolate oxygen and quinoline N atoms for 1:2 (L:M) complexes. The thermal analyses (TG and DTA) as well as the solid electrical conductivity measurements are also studied. The molecular parameters of the ligands and their metal complexes have been calculated.  相似文献   

15.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

16.
The ternary piroxicam (Pir; 4-hydroxy-2-methyl-N-(2-pyridyl)-2H-1,2-benzothiazine-3-carboxamide 1,1-dioxide) complexes of Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with various amino acids (AA) such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized by elemental analyses, molar conductance, IR, UV-Vis, magnetic moment, diffuse reflectance and X-ray powder diffraction. The UV-Vis spectra of Pir and the effect of metal chelation on the different interligand transitions are discussed in detailed manner. IR and UV-Vis spectra confirm that Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its carboxylic group, in addition PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its carboxylic and amino groups. All the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. The molar conductance data reveal that most of these chelates are non electrolytes, while Fe(III)-Pir-Gly, Co(II)-, Ni(II)-, Cu(II)- and Zn(II)-Pir-PhA chelates were 1:1 electrolytes. X-ray powder diffraction is used as a new tool to estimate the crystallinity of chelates as well as to elucidate their geometrical structures.  相似文献   

17.
Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) complexes with the ligand 2-tert-butylaminomethylpyridine-6-carboxylic acid methylester (HL(2)) have been prepared and characterized by elemental analyses, molar conductance, magnetic moment, thermal analysis and spectral data. 1:1 M:HL(2) complexes, with the general formula [M(HL(2))X(2)].nH(2)O (where M = Co(II) (X = Cl, n = 0), Ni(II) (X = Cl, n = 3), Cu(II) (grey colour, X = AcO, n = 1), Cu(II) (yellow colour, X = Cl, n = 0) and Zn(II) (X = Br, n = 0). In addition, the Fe(III) and UO(2)(II) complexes of the type 1:2 M:HL(2) and with the formulae [Fe(L(2))(2)]Cl and [UO(2)(HL(2))(2)](NO(3))(2) are prepared. From the IR data, it is seen that HL(2) ligand behaves as a terdentate ligand coordinated to the metal ions via the pyridyl N, carboxylate O and protonated NH group; except the Fe(III) complex, it coordinates via the deprotonated NH group. This is supported by the molar conductance data, which show that all the complexes are non-electrolytes, while the Fe(III) and UO(2)(II) complexes are 1:1 electrolytes. IR and H1-NMR spectral studies suggest a similar behaviour of the Zn(II) complex in solid and solution states. From the solid reflectance spectral data and magnetic moment measurements, the complexes have a trigonal bipyramidal (Co(II), Ni(II), Cu(II) and Zn(II) complexes) and octahedral (Fe(III), UO(2)(II) complexes) geometrical structures. The thermal behaviour of the complexes is studied and the different dynamic parameters are calculated applying Coats-Redfern equation.  相似文献   

18.
The formation constants of salicyl-4-amino-2,3-dimethyl-1-phenyl-3-pyrazoline-5-one (SAAP) complexes with 3d transition metal ions [Cu(II), Ni(II), Co(II), Zn(II) and Mn(II)] have been determined in 60% ethanol-water medium ofμ = 0.1M (NaCl) at 25°C. It is observed that the formation constants for chelates with 3d transition metals follow the order Mn(II) < Co(II) < Ni(II) < Zn(II) < Cu(II). The effects of metal ions, ionic radii, electronegativities and ionization potentials on chelate formation constants are discussed. Complexes of UO2(II) and Pd(II) have been synthesized and characterised by elemental analysis, electrolytic conductance, IR spectra and magnetic measurements. The ligand forms the complexes PdLCl and UO2L2,2H2O, where L is a uninegatively charged tridentate ligand (ONO donor sets).  相似文献   

19.
The potassium salt of salicylidene-DL-alanine (KHL), bis(benzylidene)ethylenediamine (A1), thiophene-o-carboxaldene-p-toluidine (A2), and its metal complexes of the formula [(MII(L)(A)(H2O)] (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II); A = A1 or A2) are prepared. They are characterized by elemental analysis, magnetic susceptibility measurements, thermogravimetric analysis, and infrared and electronic spectral studies. The electronic spectral and magnetic moment data suggest an octahedral geometry for the complexes. All of these complexes, metal nitrates, fungicides (bavistin and emcarb), and ligands are screened for their antifungal activity against Aspergillus niger, Fusarium oxysporum, and Aspergillus flavus using a plate poison technique. The complexes show higher activity than those of the free ligands, metal nitrate, and the control (DMSO) and moderate activity against bavistin and emcarb. The text was submitted by the authors in English.  相似文献   

20.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号