首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Palladium supported on carbon (Pd/C) has been shown to be an effective catalyst for the cross-coupling of potassium p-tolyltrifluoroborate with a variety of aryl bromides and iodides. Yields ranging from moderate to good were obtained using Pd/C in ethanol/water mixtures with potassium carbonate as base at 50 °C under an air atmosphere.  相似文献   

2.
A palladium‐catalyzed enantioselective intramolecular σ‐bond cross‐exchange between C?I and C?C bonds is realized, providing chiral indanones bearing an alkyl iodide group and an all‐carbon quaternary stereocenter. Pd/TADDOL‐derived phosphoramidite is found to be an efficient catalytic system for both C?C bond cleavage and alkyl iodide reductive elimination. In addition to aryl iodides, aryl bromides can also be used for this transformation in the presence of KI. Density‐functional theory (DFT) calculation studies support the ring‐opening of cyclobutanones occuring through an oxidative addition/reductive elimination process involving PdIV species.  相似文献   

3.
The Negishi cross-coupling reaction of organozinc iodides derived from α-amino acids with aromatic bromides to give substituted phenylalanine derivatives is described, using either Pd(OAc)2 or Pd2(dba)3 in combination with P(o-Tol)3 as catalyst in DMF at 50 °C. Similar results are obtained using Pd[PtBu3]2 as catalyst. The difference in reactivity displayed between aryl iodides and bromides (ArI>ArBr) has been utilised in a short synthesis of an unsymmetrical, orthogonally protected para-phenylene bis-alanine derivative.  相似文献   

4.
Biaryls were obtained in good to excellent yields from the palladium catalyzed reductive homocoupling reactions of various aryl iodides and bromides in dimethyl sulfoxide (DMSO) solution without the need for any additional reducing reagents. Pd(dppf)Cl2 is the most effective among the screened palladium catalysts for the homocoupling reactions. Fluorides, carbonates, acetates and hydroxides can be used as bases at promoting the palladium catalyzed reductive homocoupling of aryl halides in DMSO solution. X-ray photoelectron spectroscopic (XPS) analysis shows that the oxidative Pd2+(dppf) species can be reduced into the Pd0(dppf) active species by solvent DMSO molecules to furnish the catalytic cycle, indicating that DMSO plays a dual role as both solvent and reducing reagent. A plausible reaction mechanism has been discussed. Elimination of additional reducing reagents will not only reduce the reaction operation cost, but will also simplify the product separation and purification.  相似文献   

5.
Mizoroki–Heck couplings of aryl iodides and bromides with butyl acrylate were investigated as model systems to perform transition‐metal‐catalyzed transformations in continuous‐flow mode. As a suitable ligandless catalyst system for the Mizoroki–Heck couplings both heterogeneous and homogeneous Pd catalysts (Pd/C and Pd acetate) were considered. In batch mode, full conversion with excellent selectivity for coupling was achieved applying high‐temperature microwave conditions with Pd levels as low as 10?3 mol %. In continuous‐flow mode with Pd/C as a catalyst, significant Pd leaching from the heterogeneous catalyst was observed as these Mizoroki–Heck couplings proceed by a homogeneous mechanism involving soluble Pd colloids/nanoparticles. By applying low levels of Pd acetate as homogeneous Pd precatalyst, successful continuous‐flow Mizoroki–Heck transformations were performed in a high‐temperature/pressure flow reactor. For both aryl iodides and bromides, high isolated product yields of the cinnamic esters were obtained. Mechanistic issues involving the Pd‐catalyzed Mizoroki–Heck reactions are discussed.  相似文献   

6.
While palladium catalysis is ubiquitous in modern chemical research, the recovery of the active transition‐metal complex under routine laboratory applications is frequently challenging. Described herein is the concept of alternative cross‐coupling cycles with a more robust (air‐, moisture‐, and thermally‐stable) dinuclear PdI complex, thus avoiding the handling of sensitive Pd0 species or ligands. Highly efficient C? SCF3 coupling of a range of aryl iodides and bromides was achieved, and the recovery of the PdI complex was accomplished via simple open‐atmosphere column chromatography. Kinetic and computational data support the feasibility of dinuclear PdI catalysis. A novel SCF3‐bridged PdI dimer was isolated, characterized by X‐ray crystallography, and verified to be a competent catalytic intermediate.  相似文献   

7.
Nanoparticles of palladium were supported on SiO2 by chemical vapor deposition technique. The obtained Pd nanocatalyst was characterized by various techniques. This catalyst was found to be very efficient for the selective cross‐coupling of hydroxyl‐substituted aryl iodides and bromide with arylboronic acids in water at room temperature to produce the corresponding hydroxyl‐substituted biaryls. Coupling of phenylboronic acid with aryl iodides and bromides carrying substituents other than hydroxy group was also performed efficiently in refluxing ethanol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
The first use of iron pentacarbonyl is described for the novel and efficient conversion of aryl iodides, bromides and chlorides into their corresponding aryl aldehydes and/or aryl deuterated aldehydes. The reaction is catalysed with Pd(0) in aqueous N,N‐dimethylformamide at atmospheric pressure. In this protocol, neither gaseous hydrogen nor any reducing agent is required for the formation of the carbonylated product. The reaction can be performed without a P(III) ligand for aryl iodides; however, employing a P(III) ligand is necessary to perform the reaction with aryl bromides and chlorides. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Paraformaldehyde was employed as a hydride source in the palladium-catalyzed hydrodehalogenation of aryl iodides and bromides. High throughput screening using a paper-based colorimetric iodide sensor (PBCIS) showed that Pd(OAc)2 and Cs2CO3 were the best catalyst and base, respectively. Aryl iodides and bromides were hydrodehalogenated to produce the reduced arenes using Pd(OAc)2 and Pd(PPh3)4 catalyst. This catalytic system showed good functional group tolerance. In addition, it was found that paraformaldehyde is the hydride source and the reducing agent for the formation of palladium nanoparticles.  相似文献   

10.
The use of an air- and moisture-stable dinuclear PdI complex as an efficient catalyst for the formation of C(sp2)−SeR bonds is here reported. The privileged reactivity of the PdI dimer allows for the direct use of selenolates as nucleophiles in the cross-coupling. Although previous methodologies suffer from catalyst poisoning through the formation of Pd-ate complexes, the mechanistically distinct dinuclear PdI catalyst circumvents this challenge. A wide variety of aryl bromides and iodides were efficiently coupled under relatively mild reaction conditions with broad functional group tolerance. Mechanistic and computational data are presented in support of direct PdI reactivity.  相似文献   

11.
A bimetallic system of Pd/CuF2, catalytic in Pd and stoichiometric in Cu, is very efficient and selective for the coupling of fairly hindered aryl silanes with aryl, anisyl, phenylaldehyde, p‐cyanophenyl, p‐nitrophenyl, or pyridyl iodides of conventional size. The reaction involves the activation of the silane by CuII, followed by disproportionation and transmetalation from the CuI(aryl) to PdII, upon which coupling takes place. CuIII formed during disproportionation is reduced to CuI(aryl) by excess aryl silane, so that the CuF2 system is fully converted into CuI(aryl) and used in the coupling. Moreover, no extra source of fluoride is needed. Interesting size selectivity towards coupling is found in competitive reactions of hindered aryl silanes. Easily accessible [PdCl2(IDM)(AsPh3)] (IDM = 1,3‐dimethylimidazol‐2‐ylidene) is by far the best catalyst, and the isolated products are essentially free from As or Pd (<1 ppm). The mechanistic aspects of the process have been experimentally examined and discussed.  相似文献   

12.
Three iminophosphine ligands having soft phosphorus and hard nitrogen atoms and their Pd(II) complexes were synthesized and characterized using 1H NMR, 13C NMR, 31P NMR and Fourier transform infrared spectroscopic techniques. Also, electrochemical properties of the iminophosphines and their Pd(II) complexes were investigated in acetonitrile–tetrabutylammonium perchlorate solution with cyclic and square wave voltammetry techniques. All Pd(II) complexes were evaluated as catalysts for carbonylative cross‐coupling reactions of aryl iodides with phenylboronic acid. The Suzuki carbonylation of aryl iodides at 80 °C under balloon pressure of carbon monoxide in the presence of K2CO3 as a base was examined, and good to high conversions and excellent selectivities were obtained.  相似文献   

13.
Building on our recent disclosure of catalysis at dinuclear PdI sites, we herein report the application of this concept to the realization of the first catalytic method to convert aryl iodides into the corresponding ArSeCF3 compounds. Highly efficient C? SeCF3 coupling of a range of aryl iodides was achieved, enabled by an air‐, moisture‐, and thermally stable dinuclear PdI catalyst. The novel SeCF3‐bridged dinuclear PdI complex 3 was isolated, studied for its catalytic competence and shown to be recoverable. Experimental and computational data are presented in support of dinuclear PdI catalysis.  相似文献   

14.
The use of an imidazolium-based phosphinite ionic liquid (IL-OPPh2) as both solvent and ligand for Pd offers an efficient catalytic system for silylation of aryl iodides, bromides and also chlorides by triethylsilane in the presence of Cs2CO3. In the absence of base, this system is also performed for catalytic dehalogenation of aryl halides. The ionic liquid containing its corresponding Pd(0) complex can be easily recovered and reused in several runs without losing its efficiency.  相似文献   

15.
A convenient and highly efficient palladium-catalyzed direct C2-arylation/heteroarylation of N-substituted benzimidazole derivatives such as N-benzyl/3-chlorobenzyl/2,4,6-trimethylbenzyl/2,4,6-triisopropylbenzyl/aryl benzimidazoles with various aryl/heteroaryl bromides in the presence of Pd–PEPPSI (palladium-pyridine enhanced pre-catalyst preparation stabilization and initiation) complexes is reported. In order to that we have prepared a series of different symmetrical and unsymmetrical N,N′-diaralkyl benzimidazole-bearing Pd–PEPPSI complexes. Among all of the the prepared complexes, Pd–PEPPSI- 3 effectively tuned the reaction at a relatively higher rate under mild reaction conditions in an ethanol–water system. In addition, the catalytic process avoids the use of external ligand and additives. Further the reactivity was compared with commercially available copper-N-heterocyclic carbene catalyst, but the reaction was less successful. With the optimized reaction conditions, a wide range of 2-aryl/heteroaryl-N-substituted benzimidazoles were synthesized in good to excellent yields via Csp2-H/Csp2-X biaryl cross-coupling.  相似文献   

16.
Pd II ate complex : A novel alkylated pincer thioimido–Pd complex generated from a catalyst precursor and basic organometallic reagents (RM) was observed by in situ IR, 1H NMR, and 13C NMR spectroscopies for the first time and proved to be the active catalyst in stoichiometric and catalytic reactions of aryl iodides with RM (see scheme). The catalyst, as an electron‐rich PdII species, promoted the Negishi coupling of aryl iodides and alkylzinc reagents with high efficiency, even at low temperatures (0 or ?20 °C).

  相似文献   


17.
Di-t-butyl(ferrocenylmethyl)phosphine (1) has been isolated and structurally characterized. This ligand was found to be reasonably air stable as a solid and it has been shown to possess electron donating ability similar to that of tri-i-propylphosphine. A palladium catalyst bearing this ligand performed room temperature Suzuki-Miyaura coupling reactions with aryl bromides. Modest Heck coupling reactivity with aryl bromides was also observed at 100 °C. Complexation of 1 with Pd2(dba)3 led to formation of (1)2Pd0. Addition of 4-bromoanisole to solutions containing both 1 and Pd2(dba)3 led to formation of an oxidative addition product when 1:Pd ratios were ?1. With a 2:1 ratio of 1:Pd, monophosphine complex formation and oxidative addition were significantly inhibited.  相似文献   

18.
The hydrogenolysis of mono- and dinuclear PdII hydroxides was investigated both experimentally and computationally. It was found that the dinuclear μ-hydroxide complexes {[(PCNR)Pd]2(μ-OH)}(OTf) (PCNH=1-[3-[(di-tert-butylphosphino)methyl]phenyl]-1H-pyrazole; PCNMe=1-[3-[(di-tert-butylphosphino)methyl]phenyl]-5-methyl-1H-pyrazole) react with H2 to form the analogous dinuclear hydride species {[(PCNR)Pd]2(μ-H)}(OTf). The dinuclear μ-hydride complexes were fully characterized, and are rare examples of structurally characterized unsupported singly bridged μ-H PdII dimers. The {[(PCNMe)Pd]2(μ-OH)}(OTf) hydrogenolysis mechanism was investigated through experiments and computations. The hydrogenolysis of the mononuclear complex (PCNH)Pd-OH resulted in a mixed ligand dinuclear species [(PCNH)Pd](μ-H)[(PCC)Pd] (PCC=a dianionic version of PCNH bound through phosphorus P, aryl C, and pyrazole C atoms) generated from initial ligand “rollover” C−H activation. Further exposure to H2 yields the bisphosphine Pd0 complex Pd[(H)PCNH]2. When the ligand was protected at the pyrazole 5-position in the (PCNMe)Pd−OH complex, no hydride formed under the same conditions; the reaction proceeded directly to the bisphosphine Pd0 complex Pd[(H)PCNMe]2. Reaction mechanisms for the hydrogenolysis of the monomeric and dimeric hydroxides are proposed.  相似文献   

19.
In this work, ortho‐palladated complexes [Pd(µ‐Cl)(C6H4CH2 NRR′‐κ2‐C,N)]2 and [Pd(C6H4CH2NH2‐2‐C,N)Cl(Y)] were tested in the Suzuki–Miyaura cross‐coupling reaction. Cyclopalladated Pd(II) complexes as thermally stable catalysts can activate aryl bromides and chlorides. These complexes were active and efficient catalysts for the Suzuki–Miyaura reaction of aryl bromides and even less reactive aryl chlorides. The cross‐coupled products of a variety of aryl bromides and aryl chloride with phenylboronic acid in methanol as solvent at 60 °C were produced in excellent yields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Five conical calix[4]arenes that have a PPh2 group as the sole functional group anchored at their upper rim were assessed in palladium‐catalysed cross‐coupling reactions of phenylboronic acid with aryl halides (dioxane, 100 °C, NaH). With arylbromides, remarkably high activities were obtained with the catalytic systems remaining stable for several days. The performance of the ligands is comparable to a Buchwald‐type triarylphosphane, namely, (2′‐methyl[1,1′‐biphenyl]‐2‐yl)diphenylphosphane, which in contrast to the calixarenyl phosphanes tested may display chelating behaviour in solution. With the fastest ligand, 5‐diphenylphosphanyl‐25,26,27,28‐tetra(p‐methoxy)benzyloxy‐calix[4]arene ( 8 ), the reaction turnover frequency for the arylation of 4‐bromotoluene was 321 000 versus 214 000 mol(ArBr).mol(Pd)?1. h?1 for the reference ligand. The calixarene ligands were also efficient in Suzuki cross‐coupling reactions with aryl chlorides. Thus, by using 1 mol % of [Pd(OAc)2] associated with one of the phosphanes, full conversion of the deactivated arenes 4‐chloroanisole and 4‐chlorotoluene was observed after 16 h. The high performance of the calixarenyl–phosphanes in Suzuki–Miyaura coupling of aryl bromides possibly relies on their ability to stabilise a monoligand [Pd0L(ArBr)] species through supramolecular binding of the Pd‐bound arene inside the calixarene cavity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号