首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new hexa‐coordinated ruthenium(II) hydroxyquinoline–thiosemicarbazone complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = hydroxyquinoline–thiosemicarbazone) were synthesized by reacting ruthenium precursor complexes [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with hydroxyquinoline–thiosemicarbazone ligands in ethanol. The new complexes were characterized by analytical and spectroscopic (FT‐IR, UV–visible, NMR (1H, 13C and 31P) and fast atom bombardment (FAB)–mass spectrometric methods. Based on the spectral results, an octahedral geometry was assigned for all the complexes. The new complexes showed good catalytic activity for the conversion of aldehydes to amides in the presence of hydroxylamine hydrochloride–sodium bicarbonate and for the oxidation of alkanes into their corresponding alcohols and ketones in the presence of m‐chloroperbenzoic acid. The complexes also catalyzed the N‐alkylation of benzylamine in the presence of KOtBu in alcohol medium. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Three new complexes: [M(L)(H2O)] [M = Zn ( 1 ), Co ( 2 ), Ni ( 3 ); H2L = 5‐(pyridin‐2‐ylmethyl)aminoisophthalic acid] were synthesized under hydrothermal conditions at 180 °C and were characterized by elemental analysis, FT‐IR spectroscopy, single‐crystal X‐ray diffraction, and thermogravimetric analysis (TGA). The results of X‐ray diffraction analysis reveal that complexes 1 – 3 are isostructural and crystallize in the monoclinic system with space group P21/c. Each of the complexes displays a (3,3′)‐connected two‐dimensional (2D) wave‐like network with (4,82) topology, within which five‐membered uncoplanar N,N‐chelated metallacycles are shaped. Delicate N–H ··· O and O–H ··· O hydrogen bonding interactions exist in complexes 1 – 3 . Adjacent 2D layers are linked by intermolecular interactions, resulting in the construction of extended metal‐organic frameworks (MOFs) in complexes 1 and 2 .  相似文献   

3.
Geminally diaurated μ2‐aryl complexes have been prepared where gold(I) centers were bridged by the semirigid diphosphine ligands bis(2‐diphenylphosphinophenyl)ether (DPEphos) and 4,6‐bis(diphenylphosphanyl)dibenzo[b,d]furan (DBFphos). Diaurated complexes were synthesized in ligand redistribution reactions of the corresponding di‐gold dichlorides with di‐gold diaryls (six of them new) and silver(I) salts. Diaurated complexes were isolated as salts of the minimally coordinating anions SbF6? and ReO4?. Efforts to prepare salts of the tetraarylborate [B(3,5‐(CF3)2C6H3)4]? led to transmetalation from boron, with crystallization of the fluorinated aryl complex. The new complexes were characterized by multinuclear NMR, absorption and emission spectroscopies, 77 K emission lifetimes, and by combustion analysis; three are crystallographically characterized. Structures of geminally diaurated aryl ligands are compared to those of mono‐aurated analogues. Both crystal structures and density‐functional theory calculations indicate slight but observable disruptions of aryl ligand aromaticity by geminal di‐gold binding. An intermolecular aurophilic interaction in one structurally authenticated complex was examined computationally.  相似文献   

4.
Stable dimeric palladium(II ) complexes of general formula [Pd2(μ‐R)23‐allyl)2] (R=haloaryl, mesityl) have been prepared. Their X‐ray crystal structures, determined for some of the complexes, show that the two coordination square planes are usually coplanar. The haloaryl complexes are fluxional in solution, showing exchange between cis and trans isomers (relative to the orientation of the two allyl groups in the dimer) through solvent‐assisted associative bridge splitting. A number of other ancillary ligands (O,O, S,S, or C,N donors) failed to stabilize the bridging situation. Also, bridging phenyls were unstable. The reasons for this behavior and the formation of alternative compounds in attempts at synthesizing them are fully analyzed and explained. Stable aryl bridges seem to be favored by a combination of factors: the use of ancillary ligands of small size and lacking electron lone pairs, and the use of aryl ligands reluctant to homo and hetero C? C coupling. These seem to be more important factors in the stabilization of bridging aryl complexes than the strength of the bridges themselves.  相似文献   

5.
The synthesis and comprehensive characterization of a series of base‐stabilized ChX2 (Ch=Se, Te; X=Cl, Br) is reported using aryl‐substituted diazabutadiene and 2,2′‐bipyridine (bipy) as the ligands. In stark contrast to free ChX2 the complexes display excellent thermal stability. Their use as viable ChX2 reagents that may be stored for later use is demonstrated in principle. The syntheses are simple and high‐yielding from commercially available or easily synthesized reagents. The bipy complexes are exceedingly rare examples of this ubiquitous ligand being utilized within Group 16 chemistry; the Se examples are the first to be characterized by X‐ray crystallography, and the Te species are only the second.  相似文献   

6.
A series of europium(III) and terbium(III) complexes of three 1,4,7‐triazacyclononane‐based pyridine containing ligands were synthesized. The three ligands differ from each other in the substitution of the pyridine pendant arm, namely they have a carboxylic acid, an ethylamide, or an ethyl ester substituent, i.e., these ligands are 6,6′,6″‐[1,4,7‐triazacyclononane‐1,4,7‐triyltris(methylene)]tris[pyridine‐2‐carboxylic acid] (H3tpatcn), ‐tris[pyridine‐2‐carboxamide] (tpatcnam), and ‐tris[pyridine‐2‐carboxylic acid] triethyl ester (tpatcnes) respectively. The quantum yields of both the europium(III) and terbium(III) emission, upon ligand excitation, were highly dependent upon ligand substitution, with a ca. 50‐fold decrease for the carboxamide derivative in comparison to the picolinic acid (=pyridine‐2‐carboxylic acid) based ligand. Detailed analysis of the radiative rate constants and the energy of the triplet states for the three ligand systems revealed a less efficient energy transfer for the carboxamide‐based systems. The stability of the three ligand systems in H2O was investigated. Although hydrolysis of the ethyl ester occurred in H2O for the [Ln(tpatcnes)](OTf)3 complexes, the tripositive [Ln(tpatcnam)](OTf)3 complexes and the neutral [Ln(tpatcn)] complexes showed high stability in H2O which makes them suitable for application in biological media. The [Tb(tpatcn)] complex formed easily in H2O and was thermodynamically stable at physiological pH (pTb 14.9), whereas the [Ln(tpatcnam)](OTf)3 complexes showed a very high kinetic stability in H2O, and once prepared in organic solvents, remained undissociated in H2O.  相似文献   

7.
N‐Heterocyclic carbenes (NHCs) are of great importance and are powerful ligands for transition metals. A new series of sterically hindered benzimidazole‐based NHC ligands (LHX) ( 2a , 2b , 2c , 2d , 2e , 2f ), silver–NHC complexes ( 3a , 3b , 3c , 3d , 3e , 3f ) and palladium–NHC complexes ( 4a , 4b , 4c , 4d , 4e , 4f ) have been synthesized and characterized using appropriate spectroscopic techniques. Studies have focused on the development of a more efficient catalytic system for the Suzuki coupling reaction of aryl chlorides. Catalytic performance of Pd–NHC complexes and in situ prepared Pd(OAc)2/LHX catalysts has been investigated for the Suzuki cross‐coupling reaction under mild reaction conditions in aqueous N,N‐dimethylformamide (DMF). These complexes smoothly catalyzed the Suzuki–Miyaura reactions of electron‐rich and electron‐poor aryl chlorides. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Platinum (II) complexes bearing N‐heterocyclic carbene (NHC) ligands have been widely used in catalytic chemistry, but there are very few reports of biological properties of this type of complexes. A series of [PtCl2(NHC)(PEt3)] complexes were synthesized. The structures of all compounds were characterized by 1H‐NMR, 13C‐NMR, IR and elemental analysis techniques, which supported the proposed structures. The single crystal structures of complexes 1a and 1e were determined. The title complexes show slightly distorted square‐planar coordination around the platinum (II) metal center. The cytotoxic properties of the platinum (II)–NHC complexes have been assessed in various human cancer lines, including cisplatin‐sensitive and resistant cells. IC50 values of these four complexes were determined by the MTS‐based assay on three human cell lines—brain (SHSY5Y), colon (HTC116) and liver (HEP3B). These complexes have been highlighted cancer therapeutic agent with unique structures and functions.  相似文献   

9.
To explore the coordination possibilities of anthracene‐based ligands, three cadmium(ιι) complexes with anthracene‐9‐carboxylate ( L ) and relevant auxiliary chelating or bridging ligands were synthesized and characterized: Cd2( L )4(2bpy)2(μ‐H2O) ( 1 ), Cd2( L )4(phen)2(μ‐H2O) ( 2 ), and {[Cd3( L )6(4bpy)]} ( 3 ) (2bpy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline, and 4bpy = 4,4′‐bipyridine). Structural analyses show that complexes 1 and 2 both take dinuclear structures by incorporating the chelating 2bpy or phen ligand, which are further interlinked by intermolecular hydrogen‐bonding, π ··· π stacking, and/or C–H ··· π supramolecular interactions to generate higher‐dimensional supramolecular frameworks. Complex 3 has a one‐dimensional (1D) ribbon‐like structure, which is further assembled into a two‐dimensional (2D) layer, and a three‐dimensional (3D) framework by the co‐effects of interchain C–H ··· O hydrogen‐bonding and C–H ··· π supramolecular interactions. Moreover, the luminescent properties of these complexes were further investigated in detail.  相似文献   

10.
《中国化学会会志》2017,64(4):420-426
Six new silver complexes containing symmetrical N ‐heterocyclic carbene (NHC ) ligands were synthesized by the reaction of azolium salts with Ag2O in CH2Cl2 . These complexes were tested against Gram‐negative bacterial strains (Escherichia coli and Pseudomonas aeruginosa ), Gram‐positive bacterial strains (Enterococcus faecalis and Staphylococcus aureus ), and fungal strains (Candida albicans and Candida tropicalis ), and all tested complexes showed good activity against the different microorganisms.  相似文献   

11.
A new range of CF3‐substituted aminomethyldiphosphine (P―C―N) ligands ((C6H5)2PCH2)2NR (R = ―C6H4(2‐CF3) ( 1 ), ―C6H4(3‐CF3) ( 1b ) has been synthesized from 2‐(trifluoromethyl)aniline and 3‐(trifluoromethyl)aniline with diphenylphosphine. The aminomethyldiphosphine ligands were reacted with Pd(cod)Cl2 to give corresponding metal complexes, PdLCl2 ( 2a , 2b ). The aminomethyldiphosphine–palladium compounds were characterized by utilizing several methods including NMR (1H, 13C, 31P) and elemental analysis. These compounds were used as catalysts in Suzuki cross‐coupling reaction of aryl chlorides and bromides. The effect of base was also investigated in this current project. CF3‐substituted aminomethyldiphosphine–palladium complexes were found to be efficient catalysts in Suzuki cross‐coupling reaction of activated and deactivated aryl boronic acids. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
First examples of transition metal complexes with HpicOH [Cu(picOH)2(H2O)2] ( 1 ), [Cu(picO)(2,2′‐bpy)]·2H2O ( 2 ), [Cu(picO)(4,4′‐bpy)0.5(H2O)]n ( 3 ), and [Cu(picO)(bpe)0.5(H2O)]n ( 4 ) (HpicOH = 6‐hydroxy‐picolinic acid; 2,2′‐bpy = 2,2′‐bipyridine; 4,4′‐bpy = 4,4′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane) have been synthesized and characterized by single‐crystal X‐ray diffraction. The results show that HpicOH ligand can be in the enol or ketonic form, and adopts different coordination modes under different pH value of the reaction mixture. In complex 1 , HpicOH ligand is in the enol form and adopts a bidentate mode. While in complexes 2 – 4 , as the pH rises, HpicOH ligand becomes in the ketonic form and adopts a tridentate mode. The coordination modes in complexes 1 – 4 have not been reported before. Because of the introduction of the terminal ligands 2,2′‐bpy, complex 2 is of binuclear species; whereas in complexes 3 and 4 , picO ligands together with bridging ligands 4,4′‐bpy and bpe connect CuII ions to form 2D nets with (123)2(12)3 topology.  相似文献   

13.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

15.
Symmetrical bis‐Schiff bases (LH 2) have been synthesized by the condensation of 1,6‐hexanediamine (hn) and carbonyl or dicarbonyl. One of the synthesized Schiff bases has been subjected to the molecular docking for the prediction of their potentiality against coronavirus (SARS‐CoV‐2). Molecular docking revealed that tested Schiff base possessed high binding affinity with the receptor protein of SARS CoV‐2 compared with hydroxychloroquine (HCQ). The ADMET analysis showed that ligand is non‐carcinogenic and less toxic than standard HCQ. Schiff bases acting as dibasic tetra‐dentate ligands formed titanium (IV) complexes of the type [TiL(H2O)2Cl2] or [TiL(H2O)2]Cl2 being coordinated through ONNO donor atoms. Ligands and complexes were characterized by the elemental analysis and physicochemical and spectroscopic data including FTIR, 1H NMR, mass spectra, UV‐Visible spectra, molar conductance, and magnetic measurement. Optimized structures obtained from quantum chemical calculations supported the formation of complexes. Antibacterial, antifungal, and anti‐oxidant activity assessments have been studied for synthesized ligands and complexes.  相似文献   

16.
通过调变辅助配体,设计合成了两个新的Cu(II)化合物Cu(mal)(tap)(H2O)]n(1) 和 [Cu2(mal)2(bpym)2(H2O)2]·2H2O(2) (其中H2mal =顺丁烯二酸, tap=1,4,5,8-四氮杂菲,bpym=2,2′-联嘧啶),并用X-射线单晶衍射技术对其进行了结构表征。化合物1是一维弓背状配位聚合链通过氢键和π–π 堆积作用拓展形成的三维超分子体系;化合物2 展现一个具有六连接α-Po(46)拓扑的3D→3D二重穿插结构。此外根据晶体结构,利用Gaussian 03W中的DFT方法对化合物1和2进行几何构型优化,同时,用DFT-BS方法研究了两个化合物的磁性,结果表明计算结果与实验结果吻合,它们均具有弱的反铁磁相互作用。  相似文献   

17.
New hexa‐coordinated binuclear Ru(III) Schiff base complexes of the type {[(B)2X2Ru]2L} (where B = PPh3 or AsPh3; X = Cl or Br; L = binucleating N2O2 Schiff bases) were synthesized and characterized by elemental analysis, magnetic susceptibility measurement, FT‐IR, UV–vis, 13C{1H}‐NMR, ESR at 300 and 77 K, cyclic voltammetric technique, powder X‐ray diffraction pattern and SEM. The new complexes were used as catalysts in phenyl–phenyl coupling reaction and the oxidation of alcohols to their corresponding carbonyl compounds using molecular oxygen atmosphere at room temperature. Further, the new Schiff base ligands and their Ru(III) complexes were also screened for their antibacterial activity against K. pneumoniae, Shigella sp., M. luteus, E. coli and S. typhi. From this study, it was found that the activity of the ruthenium(III) Schiff base complexes almost reaches the effectiveness of the conventional bacteriocide standards. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A series of chalcone ligands and their corresponding vanadyl complexes of composition [VO (LI–IV)2(H2O)2]SO4 (where LI = 1,3‐Diphenylprop‐2‐en‐1‐one, LII = 3‐(2‐Hydroxy‐phenyl)‐1‐phenyl‐propenone, LIII = 3‐(3‐Nitro‐phenyl)‐1‐phenyl‐propenone, LIV = 3‐(4‐Methoxy‐phenyl)‐1‐phenyl‐propenone) have been synthesized and characterized using various spectroscopic (Fourier‐transform infrared, electrospray ionization mass, nuclear magnetic resonance, electron paramagnetic resonance, thermogravimetric analysis, vibrating sample magnetometer) and physico‐analytic techniques. Antidiabetic activities of synthesized complexes along with chalcones were evaluated by performing in vitro and in silico α‐amylase and α‐glucosidase inhibition studies. The obtained results displayed moderate to significant inhibition activity against both the enzymes by vanadyl chalcone complexes. The most potent complexes were further investigated for the enzyme kinetic studies and displayed the mixed inhibition for both the enzymes. Further, antioxidant activity of vanadyl chalcone complexes was evaluated for their efficiency to release oxidative stress using 2,2‐diphenyl‐1‐picryl‐hydrazyl‐hydrate assay, and two complexes (Complexes 2 and 4 ) have demonstrated remarkable antioxidant activity. All the complexes were found to possess promising antidiabetic and antioxidant potential.  相似文献   

19.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

20.
Two nickel(II) complexes were synthesized and structurally as well as magnetically characterized by using two positional isomeric nitronyl nitroxide radical ligands and H3cda as co‐ligand: [Ni(NIToPy)(cda)]H2O · CH3OH ( 1 ) and [Ni(IM4Py)2(cda)H2O] ( 2 ) [NIToPy = 2‐(3′‐pyridinyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐oxyl‐3‐oxide; IM4Py = 2‐(4′‐pyridinyl)‐4,4,5,5‐tetramethylimidazoline‐l‐oxyl; H3cda = 4‐hydroxypyridine‐2,6‐dicarboxylic acid]. Single‐crystal structures analyses show that both complexes have similar mononuclear structures, in which the central NiII ions are hexacoordinated with a distorted octahedral arrangement. The magnetic properties of 1 and 2 were studied, and antiferromagnetic interactions between NiII ion and radicals are observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号