首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The transformation of C? H bonds into other chemical bonds is of great significance in synthetic chemistry. C? H bond‐activation processes provide a straightforward and atom‐economic strategy for the construction of complex structures; as such, they have attracted widespread interest over the past decade. As a prevalent directing group in the field of C? H activation, the amide group not only offers excellent regiodirecting ability, but is also a potential C? N bond precursor. As a consequence, a variety of nitrogen‐containing heterocycles have been obtained by using these reactions. This Focus Review addresses the recent research into the amide‐directed tandem C? C/C? N bond‐formation process through C? H activation. The large body of research in this field over the past three years has established it as one of the most‐important topics in organic chemistry.  相似文献   

2.
Relieving the strain : The rhodium(I)‐catalyzed activation of C C bonds in functionalized cyclobutanes opens a novel route to highly substituted carbo‐ and heterocycles. Particularly intriguing is the differentiation of enantiotopic C C bonds, which leads to the formation of highly enantiomerically enriched lactones, cyclopentanones, and cyclohexenones (see scheme).

  相似文献   


3.
ThDP‐dependent cyclohexane‐1,2‐dione hydrolase (CDH) catalyzes the C C bond cleavage of cyclohexane‐1,2‐dione to 6‐oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH‐H28A is much less able to catalyze the C C bond formation, while the ability for C C bond cleavage is still intact. The double variant CDH‐H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane‐1,2‐dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54–94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane‐2,3‐dione are alternative donor substrates for C C bond formation. Thus, the very rare aldehyde–ketone cross‐benzoin reaction has been solved by design of an enzyme variant.  相似文献   

4.
We report the first enantioselective C C bond formation through C O bond cleavage using aryl ester counterparts. This method is characterized by its wide substrate scope and results in the formation of quaternary stereogenic centers with high yields and asymmetric induction.  相似文献   

5.
An ortho‐selective C F bond borylation between N‐heterocycle‐substituted polyfluoroarenes and Bpin‐Bpin with simple and commercially available [Rh(cod)2]BF4 as a catalyst is now reported. The reaction proceeds under mild reaction conditions with high efficiency and broad substrate scope, even toward monofluoroarene, thus providing a facile access to a wide range of borylated fluoroarenes that are useful for photoelectronic materials. Preliminary mechanistic studies reveal that a RhIII/V catalytic cycle via a key intermediate rhodium(III) hydride complex [(H)RhIIILn(Bpin)] may be involved in the reaction.  相似文献   

6.
A novel copper‐catalyzed aerobic oxidative C(CO) C(alkyl) bond cleavage reaction of aryl alkyl ketones for C N bond formation is described. A series of acetophenone derivatives as well as more challenging aryl ketones with long‐chain alkyl substituents could be selectively cleaved and converted into the corresponding amides, which are frequently found in biologically active compounds and pharmaceuticals.  相似文献   

7.
Copper‐catalyzed Ullmann condensations are key reactions for the formation of carbon–heteroatom and carbon–carbon bonds in organic synthesis. These reactions can lead to structural moieties that are prevalent in building blocks of active molecules in the life sciences and in many material precursors. An increasing number of publications have appeared concerning Ullmann‐type intermolecular reactions for the coupling of aryl and vinyl halides with N, O, and C nucleophiles, and this Minireview highlights recent and major developments in this topic since 2004.  相似文献   

8.
A fundamentally novel approach to bioactive quinolizinones is based on the palladium‐catalyzed intramolecular cyclocarbonylation of allylamines. [Pd(Xantphos)I2], which features a very large bite angle, has been found to facilitate the rapid carbonylation of azaarene‐substituted allylamines into bioactive quinolizinones in good to excellent yields. This transformation represents the first dearomative carbonylation and is proposed to proceed by palladium‐catalyzed C N bond activation, dearomatization, CO insertion, and a Heck reaction.  相似文献   

9.
10.
Ruthenium–triphos complexes exhibited unprecedented catalytic activity and selectivity in the redox‐neutral C C bond cleavage of the β‐O‐4 lignin linkage of 1,3‐dilignol model compounds. A mechanistic pathway involving a dehydrogenation‐initiated retro‐aldol reaction for the C C bond cleavage was proposed in line with experimental data and DFT calculations.  相似文献   

11.
[Cp*RhIII]‐catalyzed C H activation of arenes assisted by an oxidizing N O or N N directing group has allowed the construction of a number of hetercycles. In contrast, a polar N O bond is well‐known to undergo O‐atom transfer (OAT) to alkynes. Despite the liability of N O bonds in both C H activation and OAT, these two important areas evolved separately. In this report, [Cp*RhIII] catalysts integrate both areas in an efficient redox‐neutral coupling of quinoline N‐oxides with alkynes to afford α‐(8‐quinolyl)acetophenones. In this process the N O bond acts as both a directing group for C H activation and as an O‐atom donor.  相似文献   

12.
13.
A general method for the synthesis of α‐substituted vinyl sulfones makes use of a combination of a triazole gold complex and gallium triflate. This efficient C S bond formation between simple terminal alkynes and sulfinic acids provides access to various α‐substituted vinyl sulfones.  相似文献   

14.
15.
Pick your Pd partners : A number of catalytic systems have been developed for palladium‐catalyzed C? H activation/C? C bond formation. Recent studies concerning the palladium(II)‐catalyzed coupling of C? H bonds with organometallic reagents through a PdII/Pd0 catalytic cycle are discussed (see scheme), and the versatility and practicality of this new mode of catalysis are presented. Unaddressed questions and the potential for development in the field are also addressed.

  相似文献   


16.
The copper(I)‐catalyzed alkylation of electron‐deficient polyfluoroarenes with N‐tosylhydrazones and diazo compounds has been developed. This reaction uses readily available starting materials and is operationally simple, thus representing a practical method for the construction of C(sp2) C(sp3) bonds with polyfluoroarenes through direct C H bond functionalization. Mechanistically, copper(I) carbene formation and subsequent migratory insertion are proposed as the key steps in the reaction pathway.  相似文献   

17.
Inexpensive cobalt catalysts derived from N‐heterocylic carbenes (NHC) allowed efficient catalytic C? H bond arylations on heteroaryl‐substituted arenes with widely available aryl chlorides, which set the stage for the preparation of sterically hindered tri‐ortho‐substituted biaryls. Likewise, challenging direct alkylations with β‐hydrogen‐containing primary and even secondary alkyl chlorides proceeded on pyridyl‐ and pyrimidyl‐substituted arenes and heteroarenes. The cobalt‐catalyzed C? H bond functionalizations occurred efficiently at ambient reaction temperature with excellent levels of site‐selectivities and ample scope. Mechanistic studies highlighted that electron‐deficient aryl chlorides reacted preferentially, while the arenes kinetic C? H bond acidity was found to largely govern their reactivity.  相似文献   

18.
19.
20.
A grand opening : N‐Boc‐N‐alkylsulfamides are effective substrates for the title transformation. Oxidative cyclization is highly chemoselective as well as being both stereospecific and diastereoselective. With the advent of new protocols that facilitate ring opening of the six‐membered‐ring heterocyclic products, access to differentially protected 1,3‐diamines has been made possible (see scheme).

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号