首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
In this exploratory paper we propose a framework for the deduction apparatus of multi-valued logics based on the idea that a deduction apparatus has to be a tool to manage information on truth values and not directly truth values of the formulas. This is obtained by embedding the algebraic structure V defined by the set of truth values into a bilattice B. The intended interpretation is that the elements of B are pieces of information on the elements of V. The resulting formalisms are particularized in the framework of fuzzy logic programming. Since we see fuzzy control as a chapter of multi-valued logic programming, this suggests a new and powerful approach to fuzzy control based on positive and negative conditions.  相似文献   

10.
The languages of finitary and infinitary logic over the alphabet of bounded lattices have proven to be of considerable use in the study of compacta. Significant among the sentences of these languages are the ones that are base free, those whose truth is unchanged when we move among the lattice bases of a compactum. In this paper we define syntactically the expansive sentences, and show each of them to be base free. We also show that many well-known properties of compacta may be expressed using expansive sentences; and that any property so expressible is closed under inverse limits and co-existential images. As a byproduct, we conclude that co-existential images of pseudo-arcs are pseudo-arcs. This is of interest because the corresponding statement for confluent maps is still open, and co-existential maps are often??but not always??confluent.  相似文献   

11.
Fuzzy logic L∞9 considered in connection with fuzzy sets theory, is a special theory, is a special many valued logic with truth-value sets [0, 1], which has been studied already by Lukasiewicz. We consider also his versions Lm for m ? 2 with finite truth-value sets. In all cases we add two further propositional connectives, one conjunction and one disjunction. For these logics we give a list of tautologies, consider relations between their sets of tautologies, prove their compactness, and mention some further results.  相似文献   

12.
Let S be a set, P(S) the class of all subsets of S and F(S) the class of all fuzzy subsets of S. In this paper an “extension principle” for closure operators and, in particular, for deduction systems is proposed and examined. Namely we propose a way to extend any closure operator J defined in P(S) into a fuzzy closure operator J* defined in F(S). This enables us to give the notion of canonical extension of a deduction system and to give interesting examples of fuzzy logics. In particular, the canonical extension of the classical propositional calculus is defined and it is showed its connection with possibility and necessity measures. Also, the canonical extension of first order logic enables us to extend some basic notions of programming logic, namely to define the fuzzy Herbrand models of a fuzzy program. Finally, we show that the extension principle enables us to obtain fuzzy logics related to fuzzy subalgebra theory and graded consequence relation theory. Mathematics Subject Classification : 03B52.  相似文献   

13.
Bénabou deduction-categories are defined, with a set of additional assumptions that define categories with formal finite limits (resp. formal regular categories, formal logoi, formal topoi). They are shown to be generalized structures in which higher-order many-sorted languages can be realized. The corresponding Gentzen-type higher-order calculus of sequents is explicited and the soundness theorem is formulated. A construction is given, which associates to each deduction category with formal properties a real category with the corresponding real properties, in a universal way. The corresponding sounddess and completeness properties are formulated for the real categories thus obtained. Fuzzy sets, as generalized by Goguen are introduced, considered as the objects of a category Fuz(H), which turns out to be the real category associated to a very simple formal topos, and thus to be itself a topos: furthermore this is proved to be a Grothendieck topos which is a strictly full epireflective subcategory of Higgs' category of ‘H-valued sets’. Topoi are proposed as generalized fuzzy sets, and deductio0-categories as generalized2 fuzzy sets. Some related topics such as Arbib-Manes fuzzy theories, probability, many-valued and fuzzy logics, intensional logic are very briefly touched upon.  相似文献   

14.
In team semantics, which is the basis of modern logics of dependence and independence, formulae are evaluated on sets of assignments, called teams. Multiteam semantics instead takes mulitplicities of data into account and is based on multisets of assignments, called multiteams. Logics with multiteam semantics can be embedded into a two-sorted variant of existential second-order logics, with arithmetic operations on multiplicities. Here we study the Presburger fragment of such logics, permitting only addition, but not multiplication on multiplicities. It can be shown that this fragment corresponds to inclusion-exclusion logic in multiteam semantics, but, in contrast to the situation in team semantics, that it is strictly contained in independence logic. We give different characterisations of this fragment by various atomic dependency notions.  相似文献   

15.
16.
In this paper we extend the anodic systems introduced in Bueno-Soler (J Appl Non Class Logics 19(3):291–310, 2009) by adding certain paraconsistent axioms based on the so called logics of formal inconsistency, introduced in Carnielli et al. (Handbook of philosophical logic, Springer, Amsterdam, 2007), and define the classes of systems that we call cathodic. These classes consist of modal paraconsistent systems, an approach which permits us to treat with certain kinds of conflicting situations. Our interest in this paper is to show that such systems can be semantically characterized in two different ways: by Kripke-style semantics and by modal possible-translations semantics. Such results are inspired in some universal constructions in logic, in the sense that cathodic systems can be seen as a kind of fusion (a particular case of fibring) between modal logics and non-modal logics, as discussed in Carnielli et al. (Analysis and synthesis of logics, Springer, Amsterdam, 2007). The outcome is inherently within the spirit of universal logic, as our systems semantically intermingles modal logics, paraconsistent logics and many-valued logics, defining new blends of logics whose relevance we intend to show.  相似文献   

17.
Inconsistency measures have been proposed to assess the severity of inconsistencies in knowledge bases of classical logic in a quantitative way. In general, computing the value of inconsistency is a computationally hard task as it is based on the satisfiability problem which is itself NP-complete. In this work, we address the problem of measuring inconsistency in knowledge bases that are accessed in a stream of propositional formulæ. That is, the formulæ of a knowledge base cannot be accessed directly but only once through processing of the stream. This work is a first step towards practicable inconsistency measurement for applications such as Linked Open Data, where huge amounts of information is distributed across the web and a direct assessment of the quality or inconsistency of this information is infeasible due to its size. Here we discuss the problem of stream-based inconsistency measurement on classical logic, in order to make use of existing measures for classical logic. However, it turns out that inconsistency measures defined on the notion of minimal inconsistent subsets are usually not apt to be used in the streaming scenario. In order to address this issue, we adapt measures defined on paraconsistent logics and also present a novel inconsistency measure based on the notion of a hitting set. We conduct an extensive empirical analysis on the behavior of these different inconsistency measures in the streaming scenario, in terms of runtime, accuracy, and scalability. We conclude that for two of these measures, the stream-based variant of the new inconsistency measure and the stream-based variant of the contension inconsistency measure, large-scale inconsistency measurement in streaming scenarios is feasible.  相似文献   

18.
We study multiagent logics and use temporal relational models with multivaluations. The key distinction from the standard relational models is the introduction of a particular valuation for each agent and the computation of the global valuation using all agents’ valuations. We discuss this approach, illustrate it with examples, and demonstrate that this is not a mechanical combination of standard models, but a much more subtle and sophisticated modeling of the computation of truth values in multiagent environments. To express the properties of these models we define a logical language with temporal formulas and introduce the logics based at classes of such models. The main mathematical problem under study is the satisfiability problem. We solve it and find deciding algorithms. Also we discuss some interesting open problems and trends of possible further investigations.  相似文献   

19.
In order to modelize the reasoning of intelligent agents represented by a poset T, H. Rasiowa introduced logic systems called “Approximation Logics”. In these systems the use of a set of constants constitutes a fundamental tool. We have introduced in [8] a logic system called without this kind of constants but limited to the case that T is a finite poset. We have proved a completeness result for this system w.r.t. an algebraic semantics. We introduce in this paper a Kripke‐style semantics for a subsystem of for which there existes a deduction theorem. The set of “possible worldsr is enriched by a family of functions indexed by the elements of T and satisfying some conditions. We prove a completeness result for system with respect to this Kripke semantics and define a finite Kripke structure that characterizes the propositional fragment of logic . We introduce a reational semantics (found by E. Orlowska) which has the advantage to allow an interpretation of the propositionnal logic using only binary relations. We treat also the computational complexity of the satisfiability problem of the propositional fragment of logic .  相似文献   

20.
The semantics of modal logics for reasoning about belief or knowledge is often described in terms of accessibility relations, which is too expressive to account for mere epistemic states of an agent. This paper proposes a simple logic whose atoms express epistemic attitudes about formulae expressed in another basic propositional language, and that allows for conjunctions, disjunctions and negations of belief or knowledge statements. It allows an agent to reason about what is known about the beliefs held by another agent. This simple epistemic logic borrows its syntax and axioms from the modal logic KD. It uses only a fragment of the S5 language, which makes it a two-tiered propositional logic rather than as an extension thereof. Its semantics is given in terms of epistemic states understood as subsets of mutually exclusive propositional interpretations. Our approach offers a logical grounding to uncertainty theories like possibility theory and belief functions. In fact, we define the most basic logic for possibility theory as shown by a completeness proof that does not rely on accessibility relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号