首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the behavior of bovine serum albumin (BSA) during water dissociation on a bipolar membrane (BPM). BSA-modified BPM is prepared by immersing polyethylene anion exchange membrane in different concentration solutions of BSA, then casting the solution of sulfonated poly(phenylene oxide) (SPPO) in dimethyl formamide. The modification of BSA was evidenced by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The junction thickness was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the typical I-V curves for bipolar membranes were heavily affected by the BSA modifications: the more the adsorbed amount of BSA, the larger the potential drop across a bipolar membrane. The new phenomena is underlined by the intrinsic properties of BSA molecules: steric effects give rise to an increase in the thickness of the depletion layer, amphoteric properties weaken the electric field of the junction, and hydrophobicity makes the junction less wet. All of these cause negative effects on water dissociation on a bipolar membrane.  相似文献   

2.
Starburst dendrimer polyamidoamine (PAMAM) with ellipsoidal or spheroidal shape is structure-regular and has much more amino groups than conventional polymers. This paper investigates the possibility of these amino groups on water dissociation in a bipolar membrane interface. To do this, a bipolar membrane is prepared by casting the solution of sulfonated poly(phenylene oxide) (SPPO) in dimethyl formamide (DMF) on a commercial anion exchange membrane that is immersed in PAMAM aqueous solution in advance. The existence of PAMAM adsorbed on the membrane is proved by X-ray photoelectron spectroscopy (XPS), and the adsorption amount is evaluated by weighting method. The junction thickness of the prepared bipolar membrane is determined by electrochemical impedance spectroscopy (EIS), and the performance is evaluated by current–voltage curves. The experiments show that both the generation and concentration of PAMAM would strongly affect the characteristics of the bipolar membranes. There exists a transitional concentration for various generations PAMAMs to catalyze effectively the water dissociation, and above or below the transitional concentration the performance of bipolar membranes is decreasing. The higher the generation, the lower the concentration. Moreover, at a fixed solution concentration, there is not the simple relation of monotone decreasing or increasing between the performance of bipolar membranes and the generations of PAMAMs. All these can be explained according to the characteristics of PAMAMs combined with available water dissociation theory.  相似文献   

3.
The effect of silver ions on the water dissociation of bipolar membranes was first investigated in this paper. To do this, the bipolar membranes were prepared by immersing the anion exchange layers in an AgNO3 solution and then coating a solution of sulfonated polyphenylene oxide (SPPO) on the anion exchange layers. XPS and AES observations indicated that silver at the intermediate layer was in the form of AgCl. The experimental results proved that AgCl has an excellent catalytic function for water dissociation in terms of I-V curves, and the quantity of AgCl played an important role in the behavior of a bipolar membrane. The bipolar membranes with gelatin and the gelatin doped with silver as a catalytic layer were also prepared in the same way, and their I-V behavior and the water dissociation pilot tests were also investigated. The experimental results showed that in the case of gelatin alone, the voltage drop increased slightly at high gelatin concentrations, due mainly to the steric effect and electrostatic interaction, but decreased at low gelatin concentrations due to the hydrophilicity. However, when gelatin was doped with AgCl, the bipolar membranes have an appreciable improvement in both stability and catalytic function, in comparison with those prepared from silver or gelatin.  相似文献   

4.
The effect of hyperbranched aliphatic polyester (Boltorn series) on the water dissociation in bipolar membranes was firstly investigated in this paper. The bipolar membranes were prepared by immersing the anion exchange layer in a hyperbranched aliphatic polyester solution and then coating on the layer a polyphenylene oxide (SPPO) solution. The SEM observations proved the existence of hyperbranched aliphatic polyester at the membrane intermediate layer. The adsorption amount was evaluated by the oxygen content via XPS. The junction thickness of the prepared bipolar membrane was determined by electrochemical impedance spectroscopy (EIS), and the membrane performances were evaluated by current-voltage curves. The results showed that the amount and generation of Boltorn series, and temperature all affected I-V behaviors of the fabricated bipolar membranes, and the former two played the critical role. These effects were explained on the basis of the water dissociation theory and the characteristics of hyperbranched aliphatic polyester.  相似文献   

5.
This paper investigates the effect of polyethylene glycol (PEG) on the water dissociation of bipolar membranes. To do this, bipolar membranes were prepared by immersing anion exchange membranes in different-concentration solutions of different-molecular-weight PEGs and then casting the solutions of sulfonated polyphenylene oxide (SPPO) on the anion exchange membranes. All the bipolar membranes with PEG in the interface are evaluated by current-voltage curves. The experimental results prove that PEG has excellent catalytic function for water dissociation. Furthermore, this function is enhanced by both PEG amount (PEG concentration) and PEG molecular weight in the interface of a bipolar membrane.  相似文献   

6.
In this work, polyvinyl alcohol (PVA) protected silver grass-like nanostructure (PVA–Ag–GNS) with near infrared surface-enhanced Raman scattering (NIR-SERS) activity was prepared and employed to detect DNA and DNA bases. The PVA–Ag–GNS demonstrated high NIR-SERS activity and good optical reproducibility in the detection of adsorbates such as the case of crystal violet, DNA and DNA bases. By using of the tested molecule of thymine, the PVA–Ag–GNS shows a high enhancement factor (EF) of ∼108. For NIR-SERS detection of DNA molecules, Raman signals from the DNA bases of guanine (630 cm−1) and adenine (720 cm−1) are greatly enhanced. For DNA molecules NIR-SERS detection, Raman signals from the DNA bases of guanine (630 cm−1), adenine (720 cm−1) and cytosine (1010 cm−1) are greatly enhanced. The experimental results show that the NIR-SERS spectrum of DNA is dominated by guanine mode, which is followed by adenine and cytosine modes, respectively. Meanwhile, the NIR-SERS signal intensities of the DNA bases increase in the order of thymine (T) < cytosine (C) < adenine (A) < guanine (G). One can conclude that the adsorption strength of the DNA bases in DNA molecule with the silver surface is in the order T < C < A < G, which is different from that of the four DNA bases in individual molecule adsorbed on silver surface (T < A < G < C). On the other hand, the geometry optimization and calculated wavenumber of the complexes of adenine–Ag, guanine–Ag, cytosine–Ag and thymine–Ag for the ground states are performed with DFT, B3LYP functional and the LanL2DZ basis set. The calculated wavenumbers match well with the experimental results. According to our experiment and calculations, DNA base molecules adsorbed on silver surface via the intra-annular nitrogen atom which is adsorbed on the silver nanoparticle and formed metal–molecule complexes by the available lone pair.  相似文献   

7.
Primary challenges associated with the design and success of polymeric biomedical devices are generally related to the control of the biomaterial in terms of degradability characteristics, sufficient processability characteristics, and required mechanical strength that may be altered during sterilization or manufacturing procedures. Polyvinyl alcohol-based thermoresponsive biomaterials provide a distinct advantage for biomedical applications as their physiochemical properties can be easily modified according to their desired use. In this work, we evaluated the thermal degradation characteristics of a polyvinyl alcohol (PVA)/polyethylene glycol (PEG)/polyvinylpyrrolidone (PVP) hydrogel that undergoes a steam sterilization autoclave cycle at 121°C to induce fluid-like behavior. FTIR was used to characterize the evolution of the area of the carbonyl region between 1800 and 1525 cm−1. The carbonyl area increased at temperatures beyond 121°C which were used to accelerate the onset of degradation during both thermal oxidation and pyrolysis. The change in the carbonyl region was shown to correlate with respect to both temperature and time of exposure. The carbonyl region increased significantly in the presence of oxygen at temperatures above 150°C. Despite showing signs of thermal degradation at temperatures exceeding 150°C, our biomaterial was shown to be stable at 121°C during thermal degradation testing. Furthermore, bulk property analysis showed the hydrogel's mechanical and swelling properties were preserved even after being subject to multiple autoclave cycles beyond what would be experienced during a sterilization or clinical procedure.  相似文献   

8.
Samples of pure polyvinyl alcohol (PVA) and PVA doped with humic acids were exposed to gamma radiation. Gamma rays induced the degradation of the pure polymer. Degradation changes were observed using ATR FT-IR equipment. Dehydration, double bond creation, and their subsequent oxidation (surrounding atmosphere was air) were found out. Also, other degradation reactions (e.g. chain scission, cyclization) occur simultaneously. Formation of C=C and C=O bonds is apparent from FT-IR spectra. In contrast the presence of humic acids in the PVA sample showed stabilizing effect on PVA structure within the concentration range 0.5–10%.  相似文献   

9.
10.
Octahedral silver nano-plates were synthesized from aqueous solution of silver nitrate and polyvinyl alcohol. The colloid formed is dried on glass plates by simple dip-coating method to inhibit the growth of the particles, and to analyze the samples. Samples were characterized by X-ray diffractometer, transmission electron microscope (TEM), thermo-gravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. The UV–Vis absorption spectra of these silver nano-plates revealed a high intense plasmon absorption peak near 425 nm. In addition three emission peaks were observed when the excitation was fixed at 222 nm.  相似文献   

11.
In this study, we investigated the impedance spectra of bipolar membranes. Under the application of a reverse-biased voltage, the spectra showed a double dielectric relaxation profile due to the heterogeneous structure and it was analyzed in accordance with the three-layered dielectric model. It is defined that one of the compositions of the heterogeneous structure is situated at the membrane interface region between the negatively and the positively charged membrane with a thickness of less than several micrometers, which has an extraordinarily large electric capacity with a magnitude of sub-microfarads. It is concluded that this layer is identified with the intermediate layer in which the water splitting phenomenon occurs on the bipolar membrane.  相似文献   

12.
In this study, we examined the dielectric properties of an intermediate layer in a bipolar membrane, which is composed of a negatively charged layer and a positively charged layer joined in series. As a result of the time-dependent impedance measurements of charged membranes, the negative increment in electric conductivity and the positive increment in electric capacity were observed only in the case of a bipolar membrane under the application of reverse-biased voltages, which were quite different from the behavior of both monopolar membranes and of a bipolar membrane under forward-biased voltages. Further, the observed shifts showed a nearly constant value against the reverse-biased voltage. It is concluded that these characteristics coincide with the process of ion exclusion in the intermediate layer and are attributed to the water splitting mechanism.  相似文献   

13.
Femtosecond infrared (IR) two-color pump-probe experiments were used to investigate the nonlinear response of the D2O stretching vibration in weakly hydrated dimyristoyl-phosphatidylcholine (DMPC) membrane fragments. The vibrational lifetime is comparable to or longer than that in bulk D2O and is frequency dependent, as it decreases with increasing probe frequency. Also, the lifetime increases when the water content of the sample is lowered. The measured lifetimes range between 903 and 390 fs. A long-lived spectral feature grows in following the excitation and is attributed to photoinduced D-bond breaking. The photoproduct spectrum differs from the steady state difference Fourier transform infrared (FTIR) spectrum, showing that the full thermalization of the excitation energy happens on a much longer time scale than the time interval considered (12 ps). Further evidence of the inhomogeneous character of the water residing in the polar region of the bilayer comes from the spectral anisotropy. The water molecules absorbing on the low frequency side of the absorption band show no decay at all of the anisotropy, while an ultrafast partial decay appears when the high frequency side of the spectrum is probed. The overall behavior differs remarkably from that observed with similar experiments in bulk water and in water segregated in inverse micelles. In weakly hydrated phospholipid membranes, water molecules are present mostly as isolated species, prevalently involved in strong, rigid, and persistent hydrogen bonds with the polar groups of the bilayer molecules. This specific character appears to have a direct effect on the structural stability and thermal properties of the membrane.  相似文献   

14.
The thermodynamics and dynamics of a model S(N)1 reaction: t-BuCl --> t-Bu+ + Cl- is studied at the water liquid/vapor interface using molecular-dynamics computer simulations. The empirical valence bond approach is used to couple two diabatic states, covalent and ionic, in the electronically adiabatic limit. Umbrella sampling calculations are used to calculate the potential of mean force along the reaction coordinate (defined as the t-Bu to Cl distance) in bulk water and in several locations at the interface. We find a significant increase of the dissociation barrier height and of the reaction free energy at the interface relative to the bulk. This is shown to be due to the reduced polarity of the interface. Reactive flux correlation function calculations show significant deviation of the rate constant from the transition-state theory: The transmission coefficients range from 0.49 in the bulk to 0.05 above the Gibbs surface. The low transmission coefficient at the interface despite the lower friction is shown to be due to slow vibrational relaxation.  相似文献   

15.
Using neutron reflectivity, we found that there is no intrinsic depletion layer at a deuterated polystyrene (dPS) film and deuterium oxide (D(2)O) interface. A spun-cast film is susceptible to contamination on its surface from its surroundings during sample preparation. A contamination layer of hydrogenated organic material will be detected as a reduced scattering length density layer at the interface. We demonstrate that, by careful treatment of the film, contamination would be the primary cause of the reduced scattering length density layer at the interface.  相似文献   

16.
Recent quantum mechanical (QM) calculations for a monolayer of H(2)O on Ru(0001) suggested a novel stable structure with half the waters dissociated. However, different studies on Pt(111) suggested an undissociated bilayer structure in which the outer half of the water has the OH bonds toward the surface rather than the O lone pair. Since water layers on Pt are important in many catalytic processes (e.g., the fuel cell cathode), we calculated the energetics and structure of the first monolayer of water on the Pt(111) surface using QM [periodic slab using density functional calculations (DFT) with the PBE-flavor of exchange-correlation functional]. We find that the fully saturated surface ((2)/(3) ML) has half the water almost parallel to the surface (forming a Pt-O Lewis acid-base bond), whereas the other half are perpendicular to the surface, but with the H down toward the surface (forming a Pt-HO agostic bond). This leads to a net bond energy of 0.60 eV/water = 13.8 kcal/mol (the standard ice model with the H up configuration of the water molecules perpendicular to the surface is less stable by 0.092 eV/water = 2.1 kcal/mol). We examined whether the partial dissociation of water proposed for Ru(0001) could occur on Pt(111). For the saturated water layer ((2)/(3) ML) we find a stable structure with half the H(2)O dissociated (forming Pt-OH and Pt-H covalent bonds), which is less favorable by only 0.066 eV/water = 1.51 kcal/mol. These results confirm the interpretation of combined experimental (XAS, XES, XPS) and theoretical (DFT cluster and periodic including spectrum calculations) studies, which find only the H down undissociated case. We find that the undissociated structure leads to a vertical displacement between the two layers of oxygens of approximately 0.42 A (for both H down and H up). In contrast, the partially dissociated system leads to a flat structure with a separation of the oxygen layers of 0.08 A. Among the partially dissociated systems, we find that all subsurface positions for the dissociated hydrogen are less favorable than adsorbing on top of the free Pt surface atom. Our results suggest that for less than (1)/(3) ML, clustering would be observed rather than ordered monolayer structures.  相似文献   

17.
Effective dipole moments (calculated from experimental data of surface tension and electric surface potential) of some homologous normal alcohols and carboxylic acid were found to vary linearly with the number of carbon atoms in the hydrocarbon chain. Values of effective dipole moments were used for the determination of the effective dipole moments of water molecules , and the dielectric permittivity of the water subphase (1), as well as in the vicinity of the hydrophobic part of adsorbed molecule (2). The latter was found to decrease with the increase of the hydrocarbon chain length. Knowing the effective dipole moment of surface water dipoles, the average orientation angle () of water molecules at the inteface was estimated. The calculated potential drop of water varies within the range –0.038 to –2.38 V for two extreme orientations of water dipoles at the surface.  相似文献   

18.
The initial stage of the polymerization of coniferyl alcohol catalyzed by a peroxydase was studied at the air-water interface. The properties of the monolayers were investigated at constant area and at constant surface pressure by surface pressure, surface potential and ellipticity measurements. On the basis of the results obtained at constant surface area, it is proposed that the formation of a 2D layer occurs up to the inflection point of the surface pressure-area isotherm, and that for larger surface pressures a 3D structure is formed during the polymerization. If the barostat is set at the inflection point (the surface pressure is constant while the surface area increases), the 2D organization of the monolayer is retained. A kinetic model describing the adsorption of the reaction products in a 2D layer is proposed. The kinetic constants were determined from the surface potential, ellipsometry, surface pressure and surface area data.  相似文献   

19.
In the present study, the effect of ion-exchange fiber fabric made by electrospray deposition (ESD) on water splitting in a composite bipolar membrane (CBM) was investigated. Cation- and anion-exchange fiber (CEF and AEF) fabrics, which were composed of very thin fibers, were prepared by ESD and postdeposition chemical modification and then used as the intermediate layer of a CBM. The current-voltage characteristics under reverse bias conditions showed that the AEF fabrics enhanced water splitting. The water dissociation is accelerated by the AEF fabric, which contains both tertiary pyridyl groups and quaternary pyridinium groups and has a high specific surface area. On the other hand, the CEF fabric, which contains sulfonic acid groups and has an insufficient specific surface area, reduced water splitting. These results indicate that fiber fabric with catalytic activity and a high surface area obtained by ESD can improve the performance of a CBM.  相似文献   

20.
《Comptes Rendus Chimie》2015,18(5):586-592
Hybrid materials based on polyvinyl alcohol (PVA) and mercaptopropyltriethoxysilane (MPTES) with embedded silver nanoparticles (AgNps) have been synthesized via a sol–gel method. Silver nanoparticles were obtained via thermal reduction in the presence of PVA as a stabilizer and reducing agent. The formation of silver nanoparticles within the PVA/MPTES matrix was proven by FTIR, XRD, and TEM analysis. The antibacterial activity of PVA/AgNps/MPTES materials was determined against strains belonging to Gram-positive and Gram-negative bacteria by disk diffusion and growth curve methods. The hybrid materials showed high antibacterial activity, which depends on the concentration of the silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号