首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute frequency stabilization of an extended-cavity diode laser at 0.94 μm is reported. The diode laser was frequency locked against rovibrational absorption lines of water vapour by using the frequency modulation spectroscopy technique. The stabilized oscillator shows a short-term frequency stability level of 40 kHz for integration times of 1 s and a long-term frequency drift lower than 10 MHz for observation times longer than 103 s. The frequency-stabilized oscillator system is mounted on a compact breadboard (75 cm×50 cm) and constitutes the seed laser system for the injection of a high-energy DIAL laser transmitter operating in the 0.94-μm spectral region.  相似文献   

2.
We report the fabrication of high optical quality single wall carbon nanotube polyvinyl alcohol composites and their application in nanotube based photonic devices. These show a broad absorption of semiconductor tubes centred at 1.55 μm, the spectral range of interest for optical communications. The films are used as mode-lockers in an erbium doped fibre laser, achieving 700 fs mode-locked pulses. Raman spectroscopy shows no damage after a long time continuous laser operation.  相似文献   

3.
We have studied crystal structure and transport properties of the quasi one-dimensional cobalt oxide CaCo2O4. The CaCo2O4 phase crystallizes in calcium-ferrite type structure, which consists of a corner- and edge-shared CoO6 octahedron network including one-dimensional double chains. Large thermoelectric power (S  150 μV/K at 390 K) with metallic temperature dependence of S, moderate resistivity (ρ  2.9 × 10−1 Ω cm at 390 K) with carrier localization at low temperature, and normal thermal conductivity (κ  6.3 W/Km at 390 K) were observed. The phonon mean-free path was calculated from the observed data, as a function of temperature. The long phonon mean-free path (l  24 Å at 300 K) implies that the thermal conductivity could be suppressed by impurity scattering of phonons with partial element substitution.  相似文献   

4.
A 120 TW/36 fs laser system based on Ti:sapphire chirped-pulse amplification (CPA) has been successfully established in our lab. The final four pass Ti:sapphire amplifier pumped by an energetic single-shot Nd:YAG—Nd:glass laser was designed and optimized. With 24 J/8 ns pump energy at 532 nm, 300 mJ/220 ps chirped pulse was amplified to 5.98 J in this amplifier, and a total saturated gain of 20 was achieved. The focused intensity of compressed beam could reach to 1020 W/cm2 with the M2 of 2.0.  相似文献   

5.
A near-infrared tunable diode laser absorption spectrometer is set up to measure the air-induced broadening coefficients and the line-strength parameters of water-vapour overtone transitions within the (2,1,1)(0,0,0) band in the 822–832 nm wavelength region. A Hitachi HL8311 E double hetero-junction structure diode laser is used as a probe. The diode laser controller is home-built and stable within ±10 A and ±10 mK, respectively. The laser-head mount has a simple design and provides easy access whenever changing of the laser head is required. The diode laser emission wavelength is thermally tuned between 50 °C and 12 °C. Thermal tuning of the diode laser emission wavelength is used to reveal the mode structure of the diode laser and to probe the overtone-band transitions of water vapour within its operating wavelength range. Current tuning of the diode laser is used at a fixed laser temperature to study the transitions one at a time. A balanced detector is used to improve the S/N ratio of the spectrum. A phase sensitive detection technique is followed to obtain the first-derivative spectra of the overtone transitions. The first-derivative spectra have been recorded at different air pressures inside the sample cell while the water-vapour pressure is kept fixed. The first-derivative spectrum is numerically integrated to obtain the original line shape. The original line shape is fitted with a Voigt profile by using a nonlinear least-squares fit program to extract the air-broadening coefficient and the line-strength parameter. The data obtained in our work is compared with the results of the HITRAN database. PACS 33.70.-w; 33.70.Fd; 33.70.Jg  相似文献   

6.
In this paper, a novel all-optical microwave generation technique based on a dual-wavelength single-longitudinal-mode (SLM) distributed Bragg reflector (DBR) fiber laser is proposed and demonstrated. By exploiting spatial hole burning (SHB) effect, this laser could provide stable dual-wavelength SLM operation with a wavelength separation of 0.088 nm corresponding to the microwave signal at 10.484 GHz with a 3 dB bandwidth of 28 kHz. By appropriately adjusting the pump power, dual-wavelength oscillation could be maintained at different temperatures. We have theoretically analyzed the mechanism for microwave generation of the proposed DBR laser, and the calculated microwave frequency is in good agreement with our experimental results. Furthermore, experimental observation shows both of the laser wavelengths and generated microwave signals have good stability at room temperature.  相似文献   

7.
Synchrotron surface X-ray diffraction has been used to investigate in situ the morphology and epitaxy of monolayer amounts of copper electrodeposited from aqueous electrolyte onto ultra-high vacuum prepared, smooth, Ga- or As-terminated GaAs(0 0 1) surfaces. The fcc lattice of the epitaxial Cu islands is rotated by 5° and tilted by about 9° with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains of Cu islands terminated by {1 1 1} facets.  相似文献   

8.
Scanning tunneling microscopy (STM) experiments reveal that Co growth on Ag(1 1 0), at coverages of Co < 1 ML and low substrate temperatures (150 K), involves a concomitant insertion of Co into the top Ag layer and exchange of Ag out onto the surface. At 300 K, coverages of Co > 1 ML gives rise to a 3D nanocluster growth on the surface, with the clusters covered by Ag. Depending slightly on coverage, the clusters have a typical diameter of 3 nm and a height of 0.4 nm. Upon annealing to 500 K, major changes are observed in the morphology of the surface. STM and AES show that there is a reduction of the number of Co islands on the surface, partly due to subsurface Co cluster migration and partly due to sintering into larger clusters.  相似文献   

9.
Gain coefficients have been calculated for transitions of singlet levels ns–np of orbital n=4 and n=5 in magnesium-like ions with atomic numbers Z=18, 19, 20, 21, 22 and 23. Population inversions for 4p and 5p levels in these ions were also calculated, via electron collisional excitation, for electron temperature range of 93–231 eV and electron density range of 1016–1017 cm−3. Under these plasma conditions, the maximum gain that occurred for 4s4p transition was at electron temperature of 231 eV and electron density of 4×1017 cm−3. Scaling of the maximum gain coefficients with atomic number Z and the plasma parameters is also presented.  相似文献   

10.
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on multi-layered cuprate superconductor Ba2Ca5Cu6O12 (O1−x Fx)2 are carried out. STM topographies show randomly distributed bright spot structures with a typical spot size of 0.8 nm. These bright spots are occupied about 28% per one unit cell of c-plane, which is comparable to the regular amount of apical oxygen of 20% obtained from element analysis. Tunneling spectra simultaneously show both the small and the large gap structures. These gap sizes at 4.9 K are about Δ 15 meV and 90 meV, respectively. The small gap structure disappears at the temperature close to TC, while the large gap persists up to 200 K. Therefore, these features correspond to the superconducting gap and pseudogap, respectively. These facts give evidence for some ordered state with large energy scale even in the superconducting state. For the superconducting gap, the ratio of 2Δ/KBTC = 4.9 is obtained with TC = 70 K, which is determined from temperature dependence of the tunneling spectra.  相似文献   

11.
We investigate a superconducting Kosterlitz–Thouless transition in the two-dimensional (2D) Hubbard model using auxiliary quantum Monte Carlo method for the ground state. The pair susceptibility is computed for both the attractive and repulsive Hubbard model. The numerical results show that the s-wave pair susceptibility scales as χ  L2 for the attractive case, in agreement with previous quantum Monte Carlo studies. The scaling χ  L2 also holds for the d-wave pair susceptibility for the repulsive Hubbard model if we adjust the band parameter t′.  相似文献   

12.
This study explores the nucleation and morphological evolution of silicon nanowires (Si-NWs) on Si (0 0 1) and (1 1 1) substrates synthesized using nanoscale Au–Si island-catalyzed rapid thermal chemical vapor deposition. The Au–Si islands are formed by Au thin film (1.2–3.0 nm) deposition at room temperature followed by annealing at 700 °C, which are employed as a liquid-droplet catalysis during the growth of the Si-NWs. The Si-NWs are grown by exposing the substrates with Au–Si islands to a mixture of gasses SiH4 and H2. The growth temperatures and the pressures are 500–600 °C and 0.1–1.0 Torr, respectively. We found a critical thickness of the Au film for Si-NWs nucleation at a given growth condition. Also, we observed that the dimensional evolution of the NWs significantly depends on the growth pressure and temperature. The resulting NWs are 30–100 nm in diameter and 0.4–12.0 μm in length. For Si (0 0 1) substrates 80% of the NWs are aligned along the 1 1 1 direction which are 30° and 60° with respect to the substrate surface while for Si (1 1 1) most of the NWs are aligned vertically along the 1 1 1 direction. In particular, we observed that there appears to be two types of NWs; one with a straight and another with a tapered shape. The morphological and dimensional evolution of the Si-NWs is significantly related to atomic diffusion kinetics and energetics in the vapor–liquid–solid processes.  相似文献   

13.
A high-power Ytterbium-doped fiber laser (YDFL) with homemade double clad fiber (DCF) is introduced in this paper. The output power characteristics of a linear cavity fiber laser have been studied theoretically by solving the rate equations and experimentally tested with single- and double-end-pumping configurations. When both ends of the fiber are pumped by two high-power laser diodes with a launched power of 300 W each, a maximum CW output of 444 W is obtained with a slope efficiency of 75%.  相似文献   

14.
Volume holographic gratings (VHGs) can be exploited to narrow the spectral output of high-power laser-diode arrays (LDAs) by nearly an order of magnitude, permitting more efficient generation of laser-polarized noble gases for various applications. A 3-fold improvement in 129Xe nuclear spin polarization, PXe, (compared to a conventional LDA) was achieved with the VHG-LDA’s center wavelength tuned to a wing of the Rb D1 line. Additionally, an anomalous dependence of PXe on the xenon density within the OP cell is reported—including high PXe values (>10%) at high xenon partial pressures (1000 torr).  相似文献   

15.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

16.
Polycrystalline TbMn2O5 was prepared by the standard solid-state reaction method and characterized by powder X-ray diffraction and magnetization to assure it is of single phase. Heat capacity measurements on the compound reveal an antiferromagnetic phase transition at 45 K. A broad peak below 6 K in the heat capacity measurements corresponds to the crossover transition of Tb3+ ordering. To confirm these magnetic orderings, neutron powder diffractions on TbMn2O5 with XYZ neutron polarization analysis were performed at the diffuse neutron scattering (DNS) spectrometer, FRJ-II, by using neutron wavelength of 4.8 Å in the temperature range of 1.8–250 K. Magnetic scattering was separated from nuclear coherent and spin incoherent scattering contributions. Long-range ordered magnetic peaks were observed below 39 K which is consistent with the heat capacity results. The drastic increasing intensities below 6 K indicate the ferromagnetic transition in Tb3+ orderings.  相似文献   

17.
The mechanism(s) of arsenate and selenate incorporation into hydroxylapatite (HAP) using extended X-ray absorption fine structure (EXAFS) spectroscopy was investigated for As- and Se-doped HAP samples with concentrations between 200 and 2500 ppm. EXAFS data on As and Se K-edges have shown similar local coordination environments and are similar to that of P in HAP, suggesting the substitution of arsenate or selenate tetrahedra on the phosphate sites. EXAFS best-fitting for As-doped samples shows that the first shell is fitted with approximately 4 O atoms at 1.68 Å, showing As(V) in tetrahedral coordination, and Se K-edge EXAFS data are characterized by the backscattering contributions an oxygen shell at 1.2 Å in the Fourier transform, which can be fit with 4 O atoms at 1.65 ± 0.01 Å. This is characteristic of Se–O distances in SeO4 tetrahedron. These findings suggest that arsenate and selenate substitute for phosphate groups with local distortions during the incorporation of these metals into the structure of HAP.  相似文献   

18.
An experimental investigation on the combustion behavior of nano-aluminum (nAl) and liquid water has been conducted. In particular, linear and mass-burning rates of quasi-homogeneous mixtures of nAl and liquid water as a function of pressure, mixture composition, particle size, and oxide layer thickness were measured. This study is the first reported self-deflagration on nAl and liquid water without the use of any additional gelling agent. Steady-state burning rates were obtained at room temperature (25 °C) using a windowed vessel for a pressure range of 0.1–4.2 MPa in an argon atmosphere, particle diameters of 38–130 nm, and overall mixture equivalence ratios () from 0.5 to 1.25. At the highest pressure studied, the linear burning rate was found to be 8.6 ± 0.4 cm/s, corresponding to a mass-burning rate per unit area of 6.1 g/cm2 s. The pressure exponent at room temperature was 0.47, which was independent of the overall mixture equivalence ratio for all of the cases considered. The mass-burning rate per unit area increased from 1.0 to 5.8 g/cm2 s for an equivalence ratio range of 0.5–1.25. It varied inversely to particle diameter, increasing by 157% when the particle diameter was decreased from 130 to 50 nm at  = 1.0.  相似文献   

19.
LSS based computed electronic stopping power values have been compared with the corresponding measured values in polymers for heavy ions with Z = 5–29, in the reduced ion velocity region, vred ≤ 1. Except for limited vred  0.6–0.85, the formulation generally shows significantly large deviations with the measured values. The ζ factor, which was approximated to be Z11/6, involved in LSS theory has been suitably modified in the light of the available experimental stopping power data. The calculated stopping power values after incorporating modified ζ in LSS formula have been found to be in close agreement with measured values in various polymers in the reduced ion velocity range 0.35 ≤ vred ≤ 1.0.  相似文献   

20.
Large scale metallic Zn microspheres and hollow ZnO microspheres are synthesized by thermal evaporation and vapor transport by heating a ZnO/graphite mixture at 1000 °C. Firstly, metallic Zn microspheres are fabricated with diameters in the range of 1–10 μm. The Zn microspheres are then annealed at 600 °C in air, which form hollow semiconducting ZnO microspheres. EDX and XRD spectra reveal that the oxidized material is indeed ZnO. Room temperature photoluminescence spectra of the oxidized material show a sharp peak at 380 nm and a wider broad peak centered at 490 nm. This growth mechanism is discussed and further investigated for other metallic and metal oxide microstructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号