首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We applied a combination of 15N relaxation and CSA/dipolar cross-correlation measurements at five magnetic fields (9.4, 11.7, 14.1, 16.4, and 18.8 T) to determine the 15N chemical shielding tensors for backbone amides in protein G in solution. The data were analyzed using various model-independent approaches and those based on Lipari-Szabo approximation, all of them yielding similar results. The results indicate a range of site-specific values of the anisotropy (CSA) and orientation of the 15N chemical shielding tensor, similar to those in ubiquitin (Fushman, et al. J. Am. Chem. Soc. 1998, 120, 10947; J. Am. Chem. Soc. 1999, 121, 8577). Assuming a Gaussian distribution of the 15N CSA values, the mean anisotropy is -173.9 to -177.2 ppm (for 1.02 A NH bond length) and the site-to-site CSA variability is +/-17.6 to +/-21.4 ppm, depending on the method used. This CSA variability is significantly larger than derived previously for ribonuclease H (Kroenke, et al. J. Am. Chem. Soc. 1999, 121, 10119) or recently, using "meta-analysis" for ubiquitin (Damberg, et al. J. Am. Chem. Soc. 2005, 127, 1995). Standard interpretation of 15N relaxation studies of backbone dynamics in proteins involves an a priori assumption of a uniform 15N CSA. We show that this assumption leads to a significant discrepancy between the order parameters obtained at different fields. Using the site-specific CSAs obtained from our study removes this discrepancy and allows simultaneous fit of relaxation data at all five fields to Lipari-Szabo spectral densities. These findings emphasize the necessity of taking into account the variability of 15N CSA for accurate analysis of protein dynamics from 15N relaxation measurements.  相似文献   

2.
Solid-state 63Cu and 65Cu NMR experiments have been conducted on a series of inorganic and organometallic copper(I) complexes possessing a variety of spherically asymmetric two-, three-, and four-coordinate Cu coordination environments. Variations in structure and symmetry, and corresponding changes in the electric field gradient (EFG) tensors, yield 63/65Cu quadrupolar coupling constants (CQ) ranging from 22.0 to 71.0 MHz for spherically asymmetric Cu sites. These large quadrupolar interactions result in spectra featuring quadrupolar-dominated central transition patterns with breadths ranging from 760 kHz to 6.7 MHz. Accordingly, Hahn-echo and/or QCPMG pulse sequences were applied in a frequency-stepped manner to rapidly acquire high S/N powder patterns. Significant copper chemical shielding anisotropies (CSAs) are also observed in some cases, ranging from 1000 to 1500 ppm. 31P CP/MAS NMR spectra for complexes featuring 63/65Cu-31P spin pairs exhibit residual dipolar coupling and are simulated to determine both the sign of CQ and the EFG tensor orientations relative to the Cu-P bond axes. X-ray crystallographic data and theoretical (Hartree-Fock and density functional theory) calculations of 63/65Cu EFG and CS tensors are utilized to examine the relationships between NMR interaction tensor parameters, the magnitudes and orientations of the principal components, and molecular structure and symmetry.  相似文献   

3.
An early solid-state NMR study of the shielding tensors in substituted fluorobenzenes had indicated the presence of the 'ortho effect'. This was confirmed recently in the liquid state from a study of cross-correlated relaxation, which gives a handle on the shielding tensor. We report here a combined experimental and computational study on substituted fluorobenzenes where the ortho substituent is varied systematically. Experimental measurements of the longitudinal relaxation of 19F indicate the cross-correlation between the chemical shift anisotropy (CSA) of fluorine and its dipolar interaction with the ortho proton, and provide a measure of the CSA orientation parameter. This parameter is obtained also from quantum chemical calculations of the 19F CSA tensor. We establish a correlation between the CSA orientation parameter and linear free energy parameters by resorting to a multi-parameter regression analysis. Excellent correlation is obtained for most of these substituents only when a parameter for the ortho effect is included.  相似文献   

4.
Knowledge of (13)C chemical shift anisotropy (CSA) tensors in nucleotide bases is important for interpretation of NMR relaxation data in terms of local dynamic properties of nucleic acids and for analysis of residual chemical shift anisotropy (RCSA) resulting from weak alignment. CSA tensors for protonated nucleic acid base carbons have been derived from measurements on a uniformly (13)C-enriched helical A-form RNA segment and a helical B-form DNA dodecamer at natural (13)C abundance. The magnitudes of the derived CSA principal values are tightly restricted by the magnetic field dependencies of the (13)C transverse relaxation rates, whereas the tensor orientation and asymmetry follow from quantitative measurements of interference between (13)C-{(1)H} dipolar and (13)C CSA relaxation mechanisms. Changes in the chemical shift between the isotropic and aligned states, Deltadelta, complement these measurements and permit cross-validation. The CSA tensors are determined from the experimental Deltadelta values and relaxation rates, under the assumption that the CSA tensor of any specific carbon in a given type of base is independent of the base position in either the RNA or DNA helix. However, the experimental data indicate that for pyrimidine C(6) carbons in A-form RNA the CSA magnitude is considerably larger than in B-form DNA. This result is supported by quantum chemical calculations and is attributed in part to the close proximity between intranucleotide C(6)H and O(5)' atoms in RNA. The magnitudes of the measured CSA tensors, on average, agree better with previous solid-state NMR results obtained on powdered nucleosides than with prior results from quantum chemical calculations on isolated bases, which depend rather strongly on the level of theory at which the calculations are carried out. In contrast, previously computed orientations of the chemical shift tensors agree well with the present experimental results and exhibit less dependence on the level of theory at which the computations are performed.  相似文献   

5.
Amide 15N chemical shift anisotropy (CSA) tensors provide quantitative insight into protein structure and dynamics. Experimental determinations of 15N CSA tensors in biologically relevant molecules have typically been performed by NMR relaxation studies in solution, goniometric analysis of single-crystal spectra, or slow magic-angle spinning (MAS) NMR experiments of microcrystalline samples. Here we present measurements of 15N CSA tensor magnitudes in a protein of known structure by three-dimensional MAS solid-state NMR. Isotropic 15N, 13C alpha, and 13C' chemical shifts in two dimensions resolve site-specific backbone amide recoupled CSA line shapes in the third dimension. Application of the experiments to the 56-residue beta1 immunoglobulin binding domain of protein G (GB1) enabled 91 independent determinations of 15N tensors at 51 of the 55 backbone amide sites, for which 15N-13C alpha and/or 15N-13C' cross-peaks were resolved in the two-dimensional experiment. For 37 15N signals, both intra- and interresidue correlations were resolved, enabling direct comparison of two experimental data sets to enhance measurement precision. Systematic variations between beta-sheet and alpha-helix residues are observed; the average value for the anisotropy parameter, delta (delta = delta(zz) - delta(iso)), for alpha-helical residues is 6 ppm greater than that for the beta-sheet residues. The results show a variation in delta of 15N amide backbone sites between -77 and -115 ppm, with an average value of -103.5 ppm. Some sites (e.g., G41) display smaller anisotropy due to backbone dynamics. In contrast, we observe an unusually large 15N tensor for K50, a residue that has an atypical, positive value for the backbone phi torsion angle. To our knowledge, this is the most complete experimental analysis of 15N CSA magnitude to date in a solid protein. The availability of previous high-resolution crystal and solution NMR structures, as well as detailed solid-state NMR studies, will enhance the value of these measurements as a benchmark for the development of ab initio calculations of amide 15N shielding tensor magnitudes.  相似文献   

6.
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.  相似文献   

7.
We have used ab initio quantum chemical techniques to compute the (13)C(alpha) and (13)C(beta) shielding surfaces for the 14 amino acids not previously investigated (R. H. Havlin et al., J. Am. Chem. Soc. 1997, 119, 11951-11958) in their most popular conformations. The spans (Omega = sigma(33) - sigma(11)) of all the tensors reported here are large ( approximately 34 ppm) and there are only very minor differences between helical and sheet residues. This is in contrast to the previous report in which Val, Ile and Thr were reported to have large ( approximately 12 ppm) differences in Omega between helical and sheet geometries. Apparently, only the beta-branched (beta-disubstituted) amino acids have such large CSA span (Omega) differences; however, there are uniformly large differences in the solution-NMR-determined CSA (Deltasigma = sigma(orth) - sigma(par)) between helices and sheets in all amino acids considered. This effect is overwhelmingly due to a change in shielding tensor orientation. With the aid of such shielding tensor orientation information, we computed Deltasigma values for all of the amino acids in calmodulin/M13 and ubiquitin. For ubiquitin, we find only a 2.7 ppm rmsd between theory and experiment for Deltasigma over an approximately 45 ppm range, a 0.96 slope, and an R(2) = 0.94 value when using an average solution NMR structure. We also report C(beta) shielding tensor results for these same amino acids, which reflect the small isotropic chemical shift differences seen experimentally, together with similar C(beta) shielding tensor magnitudes and orientations. In addition, we describe the results of calculations of C(alpha), C(beta), C(gamma)1, C(gamma)2, and C(delta) shifts in the two isoleucine residues in bovine pancreatic trypsin inhibitor and the four isoleucines in a cytochrome c and demonstrate that the side chain chemical shifts are strongly influenced by chi(2) torsion angle effects. There is very good agreement between theory and experiment using either X-ray or average solution NMR structures. Overall, these results show that both C(alpha) backbone chemical shift anisotropy results as well as backbone and side chain (13)C isotropic shifts can now be predicted with good accuracy by using quantum chemical methods, which should facilitate solution structure determination/refinement using such shielding tensor surface information.  相似文献   

8.
Nuclear spin relaxation provides detailed dynamical information on molecular systems and materials. Here, first-principles modeling of the chemical shift anisotropy (CSA) relaxation time for the prototypic monoatomic (129)Xe gas is carried out, both complementing and predicting the results of NMR measurements. Our approach is based on molecular dynamics simulations combined with pre-parametrized ab initio binary nuclear shielding tensors, an "NMR force field". By using the Redfield relaxation formalism, the simulated CSA time correlation functions lead to spectral density functions that, for the first time, quantitatively determine the experimental spin-lattice relaxation times T(1). The quality requirements on both the Xe-Xe interaction potential and binary shielding tensor are investigated in the context of CSA T(1). Persistent dimers Xe(2) are found to be responsible for the CSA relaxation mechanism in the low-density limit of the gas, completely in line with the earlier experimental findings.  相似文献   

9.
Central transition (55)Mn NMR spectra of several solid manganese pentacarbonyls acquired at magnetic field strengths of 11.75, 17.63, and 21.1 T are presented. The variety of distinct powder sample lineshapes obtained demonstrates the sensitivity of solid-state (55)Mn NMR to the local bonding environment, including the presence of crystallographically unique Mn sites, and facilitates the extraction of the Mn chemical shift anisotropies, CSAs, and the nuclear quadrupolar parameters. The compounds investigated include molecules with approximate C(4v) symmetry, LMn(CO)(5)(L = Cl, Br, I, HgMn(CO)(5), CH(3)) and several molecules of lower symmetry (L = PhCH(2), Ph(3-n)Cl(n)Sn (n= 1, 2, 3)). For these compounds, the Mn CSA values range from <100 ppm for Cl(3)SnMn(CO)(5) to 1260 ppm for ClMn(CO)(5). At 21.1 T the (55)Mn NMR lineshapes are appreciably influenced by the Mn CSA despite the presence of significant (55)Mn quadrupolar coupling constants that range from 8.0 MHz for Cl(3)SnMn(CO)(5) to 35.0 MHz for CH(3)Mn(CO)(5). The breadth of the solid-state (55)Mn NMR spectra of the pentacarbonyl halides is dominated by the CSA at all three applied magnetic fields. DFT calculations of the Mn magnetic shielding tensors reproduce the experimental trends and the magnitude of the CSA is qualitatively rationalized using a molecular orbital, MO, interpretation based on Ramsey's theory of magnetic shielding. In addition to the energy differences between symmetry-appropriate occupied and virtual MOs, the d-character of the Mn MOs is important for determining the paramagnetic shielding contribution to the principal components of the magnetic shielding tensor.  相似文献   

10.
31P chemical shift anisotropy (CSA) tensors have been calculated for a set of selected DNA and RNA backbone conformations using density functional theory. The set includes canonical A-RNA, A-DNA, BI-DNA, BII-DNA, ZI-DNA, and ZII-DNA as well as four A-RNA-type, seven non-A-RNA-type, and three non-canonical DNA conformations. Hexahydrated dimethyl phosphate has been employed as a model. The 31P chemical shift tensors obtained are discussed in terms of similarities in the behavior observed for gauche-gauche (gg) and gauche-trans (gt) conformations around the P-O bonds. We show that torsion angles alpha and zeta are major determinants of the isotropic chemical shift deltaiso and of the deltaCSA11 component of the traceless chemical shift tensor, which is revealed in separate ranges of both deltaiso and deltaCSA11 for gg- and gt-conformers, respectively. A clear distinction between the two conformation types has not been found for the deltaCSA22 and deltaCSA33 components, which is attributed to their different directional properties. The 31P CSA tensors exhibit considerable variations resulting in large spans of approximately 16 ppm for deltaCSA11 and approximately 22 ppm for deltaCSA22 and deltaCSA33. We examine the consequences of the CSA variations for predicting the chemical shift changes upon partial alignment deltacsa and for the values of CSA order parameters extracted from the analysis of 31P NMR relaxation data. The theoretical 31P CSA tensors as well as the experimental 31P CSA tensor of barium diethyl phosphate (BDEP) are used to calculate deltacsa for two eclipsed orientations of the CSA and molecular alignment tensors. Percentage differences between the CSA order parameters obtained using the theoretical 31P CSA tensors and the experimental 31P CSA tensor of BDEP, respectively, are also determined.  相似文献   

11.
The principal components of zeolite 29Si magnetic shielding tensors have been accurately measured and calculated for the first time. The experiments were performed at an ultrahigh magnetic field of 21.1 T in order to observe the small anisotropies of the 29Si shielding interactions that arise for Si atoms in near-tetrahedral geometries. A robust two-dimensional (2D) chemical shift anisotropy (CSA) recoupling pulse sequence was employed that enables quasi-static powder patterns to be resolved according to the isotropic chemical shifts. For the zeolites Sigma-2 and ZSM-12, it is demonstrated that the 29Si chemical shift (CS) tensor components measured by the recoupling experiment are in excellent agreement with those determined from spinning sidebands in slow magic-angle spinning (MAS) experiments. For the zeolite ZSM-5, the principal components of the 29Si CS tensors of 15 of the 24 Si sites were measured using the 2D CSA recoupling experiment, a feat that would not be possible with a slow MAS experiment due to the complexity of the spectrum. A simple empirical relationship between the 29Si CS tensors and local structural parameters could not be established. However, the 29Si magnetic shielding tensors calculated using Hartree-Fock ab initio calculations on clusters derived from the crystal structures are in excellent agreement with the experimental results. The accuracy of the calculations is strongly dependent on the quality of the crystal structure used in the calculation, indicating that the 29Si magnetic shielding interaction is extremely sensitive to the local structure around each Si atom. It is anticipated that the measurement and calculation of 29Si shielding tensors could be incorporated into the "NMR crystallography" of zeolites and other related silicate materials, possibly being used for structure refinements that may lead to crystal structures with very accurate Si and O atomic coordinates.  相似文献   

12.
Knowledge of the orientation of the nitrogen-15 chemical shift anisotropy (CSA) tensor is critical for a variety of experiments that provide information on protein structure and dynamics in the solid and solution states. Unfortunately, the methods available for determining the orientation of the CSA tensor experimentally have inherent limitations. Rotation studies of a single crystal provide complete information but are tedious and limited in applicability. Solid-state NMR studies on powder samples can be applied to a greater range of samples but suffer from ambiguities in the results obtained. Density functional gauge-including-atomic-orbitals (GIAO) calculations of the orientations of (15)N CSA tensors in peptides are presented here as an independent source of confirmation for these studies. A comparison of the calculated (15)N CSA orientations with the available experimental values from single-crystal and powder studies shows excellent agreement after a partial, constrained optimization of some of the crystal structures used in the calculation. The results from this study suggest that the orientation as well as the magnitudes of (15)N CSA tensors may vary from molecule to molecule. The calculated alpha(N) angle varies from 0 degrees to 24 degrees with the majority in the 10 degrees to 20 degrees range and the beta(N) angle varies from 17 degrees to 24 degrees in good agreement with most of the solid-state NMR experimental results. Hydrogen bonding is shown to have negligible effect on the orientation of (15)N CSA tensor in accordance with recent theoretical predictions. Furthermore, it is demonstrated that the orientation of the (15)N CSA can be calculated accurately with much smaller basis sets than is needed to calculate the chemical shift, suggesting that the routine application of ab initio calculations to the determination of (15)N CSA tensor orientations in large biomolecules might be possible.  相似文献   

13.
In this paper, we present 3D chemical shift anisotropy (CSA)/dipolar coupling correlation experiments, based on γ-encoded R-type symmetry sequences. The γ-encoded correlation spectra are exquisitely sensitive to the relative orientation of the CSA and dipolar tensors and can provide important structural and dynamic information in peptides and proteins. We show that the first-order (m = ±1) and second-order (m = ±2) Hamiltonians in the R-symmetry recoupling sequences give rise to different correlation patterns due to their different dependencies on the crystallite orientation. The relative orientation between CSA and dipolar tensors can be determined by fitting the corresponding correlation patterns. The orientation of (15)N CSA tensor in the quasi-molecular frame is determined by the relative Euler angles, α(NH) and β(NH), when the combined symmetry schemes are applied for orientational studies of (1)H-(15)N dipolar and (15)N CSA tensors. The correlation experiments introduced here work at moderate magic angle spinning frequencies (10-20 kHz) and allow for simultaneous measurement of multiple sites of interest. We studied the orientational sensitivity of γ-encoded symmetry-based recoupling techniques numerically and experimentally. The results are demonstrated on [(15)N]-N-acetyl-valine (NAV) and N-formyl-Met-Leu-Phe (MLF) tripeptide.  相似文献   

14.
The principal (13)C chemical-shift values for the pi-[TCNE](2)(2-) dimer anion within an array of counterions have been measured to understand better the electronic structure of these atypical chemical species in several related TCNE-based structures. The structure of pi-[TCNE](2)(2-) is unusual as it contains two very long C-C bond lengths (ca. 2.9 Angstroms) between the two monomeric units and has been found to exist as a singlet state, suggestive of a (1)A(1g) (b(2u)(2)b(1g)(0)) electronic configuration. A systematic study of several oxidation states of [TCNE](n) (n = 0, 1-, 2-) was conducted to determine how the NMR chemical-shift tensor values change as a function of electronic structure and to understand the interactions that lead to spin-pairing of the monomer units. The density functional theory (DFT) calculated nuclear shielding tensors are correlated with the experimentally determined principal chemical-shift values. Such theoretical methods provide information on the tensor magnitudes and orientations of their principal tensor components with respect to the molecular frame. Both theoretical and experimental ethylenic chemical-shielding tensors reveal high sensitivity in the component, delta(perpendicular), lying in the monomer molecular plane and perpendicular to the pi-electron plane. This largest shift dependence on charge density is observed to be about -111 ppm/e(-) for delta(perpendicular). The component in the molecular plane but parallel to the central C=C bond, delta(parallel), exhibits a sensitivity of approximately -43 ppm/e(-). However, the out-of-plane component delta'(perpendicular) shows a minimal dependence of -2.6 ppm/e(-) on the oxidation state (n) of [TCNE](n). These relative values support the claim that it is changes within the ethylenic pi-electrons and not the sigma-electrons that best account for the dramatic variations in bonding and shift tensors in this series of compounds. Concerning the intraion bonding, relatively weak Wiberg bond orders between the two monomeric components of the dimer correlate with the long bonds linking the two [TCNE(*)](-) monomers. The chemical-shift tensors for the cyano group, compared to the ethylene shifts, exhibit a reduced sensitivity on the TCNE oxidation state. The experimental principal chemical-shift components agree (within typical errors) with the calculated quantum mechanical shieldings used to correlate the bonding. The embedded ion model (EIM) was used to investigate the typically large electrostatic lattice potential in these ionic materials. Chemical-shielding principal values calculated with the EIM model differ from experiment by +/-3.82 ppm on average, whereas in the absence of an electrostatic field model, the experimental and theoretical results agree by +/-4.42 ppm, which is only a modest increase in error considering the overall ionic magnitudes associated with the tensor variations. Apparently, the effects of the sizable long-range electrostatic fields cancel when the shifts are computed because of lattice symmetry.  相似文献   

15.
Based on multifield NMR relaxation measurements and quantum chemistry calculations, a strategy aiming at the determination of the chemical shielding tensor (CST) in the liquid state is described. Brownian motions in the liquid state restrict the direct observation of CST to a third of its trace (isotropic shift), and even if CST can be probed indirectly through some spin relaxation rates (specific longitudinal relaxation rates, dipolar chemical shift anisotropy (CSA) cross-correlation rates), an insufficient number of experimental parameters prevents its complete determination. This lack of information can be compensated by using quantum chemical calculations so as to obtain the molecular CST orientation even if a relatively modest level of computation is used. As relaxation parameters involve a dynamic part, a prerequisite is the determination of the molecular anisotropic reorientation which can be obtained independently from dipolar cross-relaxation rates. A polycyclic molecule exhibiting a well-characterized anisotropic reorientation serves as an example for such a study, and some (but not all) carbon-13 chemical shielding tensors can be accurately determined. A comparison with solid-state NMR data and numerous chemical quantum calculations are presented.  相似文献   

16.
Complete (17)O chemical shielding (CS) and quadrupole coupling (QC) tensors and their molecular orientations were determined for the central residues in two tripeptides Gly-Gly-Val (GGV) and Ala-Gly-Gly (AGG) by single-crystal NMR methods. Tensor orientations in the two peptides are very similar, however, principal components are different. The most shielded CS and smallest magnitude QC components are normal to the peptide plane, while the most deshielded CS and largest QC components are in the peptide plane either at an angle of 17 degrees (CS) or perpendicular (QC) to the C=O bond. Comparisons of principal components from experiment and DFT calculations indicate that the smaller shielding tensor span in GGV (549 ppm) compared to AGG (606 ppm) is likely due to two factors: a shorter "direct" H-bond distance to the peptide carbonyl oxygen and an "indirect" H bond of the peptide NH to a carboxylate rather than a carbonyl. We anticipate that (17)O NMR should be generally useful for probing H-bonding and local electrostatic interactions in proteins and polypeptides. Using the single-crystal data as an accurate reference, we show that a useful subset of the NMR parameters, QC and CS principal components and their relative orientation, can be obtained with reasonable accuracy from a very high-field (21.2 T), stationary sample powder spectrum.  相似文献   

17.
Solid-state cross-polarization magic-angle spinning (CP/MAS) NMR spectra were recorded for the compounds [Ag(NH3)2]2SO4, [Ag(NH3)2]2SeO4 and [Ag(NH3))]NO3, all of which contain the linear or nearly linear two-coordinate [Ag(NH3)2]+ ion. The 109Ag CP/MAS NMR spectra show centrebands and associated spinning sideband manifolds typical for systems with moderately large shielding anisotropy, and splittings due to indirect 1J(109Ag,14N) spin-spin coupling. Spinning sideband analysis was used to determine the 109Ag shielding anisotropy and asymmetry parameters Deltasigma and eta from these spectra, yielding anisotropies in the range 1500-1600 ppm and asymmetry parameters in the range 0-0.3. Spectra were also recorded for 15N and (for the selenate) 77Se. In all cases the number of resonances observed is as expected for the crystallographic asymmetric units. The crystal structure of the selenate is reported for the first time. One-bond (107, 109Ag,15N) coupling constants are found to have magnitudes in the range 60-65 Hz. Density functional calculations of the Ag shielding tensor for model systems yield results that are in good agreement with the experimentally determined shielding parameters, and suggest that in the solid compounds Deltasigma and eta are reduced and increased, respectively, from the values calculated for the free [Ag(NH3)2]+ ion (1920 ppm and 0, respectively), primarily as a result of cation-cation interactions, for which there is evidence from the presence of metal-over-metal stacks of [Ag(NH3)2]+ ions in the solid-state structures of these compounds.  相似文献   

18.
We have carried out a solid-state magic-angle sample-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopic investigation of the (13)C(alpha) chemical shielding tensors of alanine, valine, and leucine residues in a series of crystalline peptides of known structure. For alanine and leucine, which are not branched at the beta-carbon, the experimental chemical shift anisotropy (CSA) spans (Omega) are large, about 30 ppm, independent of whether the residues adopt helical or sheet geometries, and are in generally good accord with Omega values calculated by using ab initio Hartree-Fock quantum chemical methods. The experimental Omegas for valine C(alpha) in two peptides (in sheet geometries) are also large and in good agreement with theoretical predictions. In contrast, the "CSAs" (Deltasigma) obtained from solution NMR data for alanine, valine, and leucine residues in proteins show major differences, with helical residues having Deltasigma values of approximately 6 ppm while sheet residues have Deltasigma approximately 27 ppm. The origins of these differences are shown to be due to the different definitions of the CSA. When defined in terms of the solution NMR CSA, the solid-state results also show small helical but large sheet CSA values. These results are of interest since they lead to the idea that only the beta-branched amino acids threonine, valine, and isoleucine can have small (static) tensor spans, Omega (in helical geometries), and that the small helical "CSAs" seen in solution NMR are overwhelmingly dominated by changes in tensor orientation, from sheet to helix. These results have important implications for solid-state NMR structural studies which utilize the CSA span, Omega, to differentiate between helical and sheet residues. Specifically, there will be only a small degree of spectral editing possible in solid proteins since the spans, Omega, for the dominant nonbranched amino acids are quite similar. Editing on the basis of Omega will, however, be very effective for many Thr, Val, and Ileu residues, which frequently have small ( approximately 15-20 ppm) helical CSA (Omega) spans.  相似文献   

19.
We have presented a systematic experimental investigation of carboxyl oxygen electric-field-gradient (EFG) and chemical shielding (CS) tensors in crystalline amino acids. Three 17O-enriched amino acids were prepared: L-aspartic acid, L-threonine, and L-tyrosine. Analysis of two-dimensional 17O multiple-quantum magic-angle spinning (MQMAS), MAS, and stationary NMR spectra yields the 17O CS, EFG tensors and the relative orientations between the two tensors for the amino acids. The values of quadrupolar coupling constants (CQ) are found to be in the range of 6.70-7.60 MHz. The values of deltaiso lie in the range of 268-292 ppm, while those of the delta11 and delta22 components vary from 428 to 502 ppm, and from 303 to 338 ppm, respectively. There is a significant correlation between the magnitudes of delta22 components and C--O bond lengths. Since C--O bond length may be related to hydrogen-bonding environments, solid-state 17O NMR has significant potential to provide insights into important aspects of hydrogen bonds in biological systems.  相似文献   

20.
The phosphorus chemical shift (CS) tensors of several ruthenium carbonyl compounds containing a phosphido ligand, micro), bridging a Ru [bond] Ru bond were characterized by solid-state (31)P NMR spectroscopy. As well, an analogous osmium compound was examined. The structures of most of the clusters investigated have approximate local C(2v) symmetry about the phosphorus atom. Compared to the "isolated" PH(2)(-) anion, the phosphorus nucleus of a bridging phosphido ligand exhibits considerable deshielding. The phosphorus CS tensors of most of the compounds have spans ranging from 230 to 350 ppm and skews of approximately zero. Single-crystal NMR was used to investigate the orientation of the phosphorus CS tensors for two of the compounds, Ru(2)(CO)(6)(mu(2)-C [triple bond] C [bond] Ph)(mu(2)-PPh(2)) and Ru(3)(CO)(9)(mu(2)-H)(mu(2)-PPh(2)). The intermediate component of the phosphorus CS tensor, delta(22), lies along the local C(2) axis in both compounds. The least shielded component, delta(11), lies perpendicular to the Ru [bond] P [bond] Ru plane while the most shielded component, delta(33), lies perpendicular to the C [bond]P [bond] C plane. The orientation of the phosphorus CS tensor for a third compound, Ru(2)(CO)(6)(mu(2)-PPh(2))(2), was investigated by the dipolar-chemical shift NMR technique and was found to be analogous, suggesting it to be the same in all compounds. Ab initio calculations of phosphorus magnetic shielding tensors have been carried out and reproduce the orientations found experimentally. The orientation of the CS tensor has been rationalized using simple frontier MO theory. Splittings due to (99,101)Ru [bond] (31)P spin-spin coupling have been observed for several of the complexes. A rare example of (189)Os [bond] (31)P spin-spin splittings is observed in the (31)P MAS NMR spectrum of the osmium cluster, where (1)J((189)Os, (31)P) is 367 Hz. For this complex, the (189)Os nuclear quadrupolar coupling constant is on the order of several hundred megahertz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号