首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Technological parameters and conditions providing control over the process of surface morphology formation in the films of the various allotropic carbon phases are established. Using these conditions, it is possible to obtain carbon films with preset properties, in particular, the values of surface density and the size of diamond-like or graphite nano-and microcrystallite.  相似文献   

2.
We design the InGaP/GaAs dual-junction (DJ) solar cells by optimizing short-circuit current matching between top and bottom cells using the Silvaco ATLAS. The relatively thicker base layer of top cell exhibits a larger short-circuit current density (J sc) while the thicker base layer of bottom cell allows for a smaller J sc. The matched J sc of 10.61±0.05 and 13.25±0.06 mA/cm 2 under AM1.5G and AM0 illuminations, respectively, are obtained, leading to the increased conversion efficiency. The base thicknesses of top InGaP cells are optimized at 0.8 and 0.65 μm for AM1.5G and AM0 illuminations, respectively, and the base thicknesses of bottom GaAs cells are optimized at 2 μm. For the optimized solar cell structure, the maximum J sc = 10.66 mA/cm 2 (13.31 mA/cm 2), V oc =  2.34 V (2.35 V), and fill factor =  87.84% (88.1%) are obtained under AM1.5G (AM0) illumination, exhibiting a maximum conversion efficiency of 25.78% (23.96%). The effect of tunnel diode structure, i.e, GaAs/GaAs, AlGaAs/AlGaAs, and InGaP/InGaP, on the characteristics of solar cells is investigated. The photogeneration rate in the DJ solar cell structure is also obtained by incident light of different wavelengths.  相似文献   

3.
In this research, diamond-like carbon (DLC) thin films were deposited on silicon substrates by radio-frequency plasma enhanced chemical vapor deposition method using gas mixture of CH4 and Ar. The effect of different CH4/Ar gas ratio on the structure, refractive index, transmission and hardness of the DLC thin films were investigated by means of Raman spectroscopy, ellipsometry, Fourier transform Infrared Spectroscopy and nano-indentation methods, respectively. Nuclear resonant reaction analysis was used to measure the amount of hydrogen and carbon in the thin films. Furthermore, wettability of the thin films was achieved by measuring of water contact angle (WCA). The results indicated that the structural properties of the diamond-like carbon thin films are strongly dependent on the composition of gas mixture. Based on ellipsometry results, refractive index of the thin films varied in the range of 1.89–2.06 at 550 nm. FTIR results determined that deposition of DLC thin films on silicon substrate led to an increase of the light transmission in IR region and these films have the potential to be used in silicon optics as the antireflective coatings in this region. Nano-indentation analysis showed that the thin films hardness changed in the range of 7.5–11 GPa. On the other hand hydrogen content and fraction of C?H bonds in the samples increased by an increase in the gas ratio of CH4/Ar. Also, WCA measurements indicated that WCA for thin films with gas ratio of 3/7 is the most and equal to 79°.  相似文献   

4.
Photoluminescence (PL) conversion of Si nanoparticles by absorbing ultraviolet (UV) lights and emitting visible ones has been used to improve the efficiency of crystalline Si solar cells. Si nanoparticle thin films are prepared by pulverizing porous Si in ethanol and then mixing the suspension with a SiO2 sol-gel (SOG).This SOG is spin-deposited onto the surface of the Si solar cells and dries in air. The short-circuit current as a function of Si nanoparticle concentration is investigated under UV illumination. The maximal increase is found at a Si concentration of 0.1 mg/mL. At such concentration and under the irradiation of an AM0 solar simulator, the photoelectric conversion efficiency of the crystalline Si solar cell is relatively increased by 2.16% because of the PL conversion.  相似文献   

5.
InGaN/GaN multiple quantum well (MQW) solar cells with stepped-thickness quantum wells (SQW) are designed and grown by metal-organic chemical vapor deposition. The stepped-thickness quantum wells structure, in which the well thickness becomes smaller and smaller along the growth direction, reveals better crystalline quality and better spectral overlap with the solar spectrum. Consequently, the short-circuit current density (Jsc) and conversion efficiency of the solar cell are enhanced by 27.12% and 56.41% compared with the conventional structure under illumination of AM1.5G (100 mW/cm2). In addition, approaches to further promote the performance of InGaN/GaN multiple quantum well solar cells are discussed and presented.  相似文献   

6.
In this paper we study the electro-optical behavior and the application of indium–tin oxide (ITO) and aluminum-doped zinc oxide (AZO) bilayer thin films for silicon solar cells. ITO–AZO bilayer thin films were deposited on glass substrates using radio-frequency magnetron sputtering. The experimental results show that a decrease in the electrical resistivity of the ITO–AZO bilayer thin films has been achieved without significant degradation of optical properties. In the best case the resistivity of the bilayer films reached a minimum of 5.075×10?4 Ω?cm when the thickness of the AZO buffer layer was 12 nm. The ITO–AZO bilayer films were applied as the front electrodes of amorphous silicon solar cells and the short-circuit current density of the solar cells was considerably increased.  相似文献   

7.
Abstract

Amorphous carbon nitride thin films (a‐C:N) were deposited from a carbon target, at room temperature onto silicon substrates, by reactive RF sputtering in a gas mixture of argon and nitrogen. The structural properties of these films have been studied by Raman, infrared (IR), and X‐ray reflectometry spectroscopies. Both the IR and Raman spectra of the a‐C:N films reveal the presence of C–C, C?C, C?N, and C≡N bonding types. The Raman spectra analysis shows, an increase of the C≡N triple bonds content when the concentration of nitrogen C(N2) in the gas mixture is increased. The Raman intensities ratio between the disorder (D) and graphitic (G) bands increases with C(N2) suggesting an increased disorder with the incorporation of nitrogen in the carbon matrix. The effect of C(N2) on the density of a‐C:N films was also investigated by X‐ray reflectometry measurement. The increase of the nitrogen concentration C(N2) was found to have a significant effect on the density of the films: as C(N2) increases from 0 to 100%, the density of the a‐C:N films decreases slightly from 1.81 to 1.62 g/cm3. The low values of density of the a‐C:N films were related (i) to the absence of C–N single bonds, (ii) to the increase of disorder introduced by the incorporation of nitrogen in the carbon matrix, and (iii) to the presence of the bands around 2350 cm?1 and 3400 cm?1 associated with the C–O bond stretching modes and the O–H vibration, respectively, suggesting a high atmospheric contamination by oxygen and water. The presence of these bands suggests the porous character of the studied samples.  相似文献   

8.
α-C:H薄膜及其在硅太阳电池上作增透膜的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
采用高频等离子体汽相淀积法在不同材料衬底上淀积出α-C:H薄膜。Raman谱分析表明,该薄膜既具有类金刚石相,又具有金刚石相。测量了该薄膜可见光范围的透射率和折射率。本文提出把该薄膜涂覆在硅太阳电池上作光学增透膜,使其在0.55—1.0μm波长范围内光谱响应明显提高,并使该电池短路电流增加率达38%。 关键词:  相似文献   

9.
This paper reports the effect of surface topography of titanium dioxide films on short-circuit current density of photoelectrochemical solar cell of ITO/TiO2/PVC-LiCLO4/graphite. The films were deposited onto ITO-covered glass substrate by screen-printing technique. The films were tempered at 300 °C, 350 °C, 400 °C, 450 °C and 500 °C for 30 min to burn out the organic parts and to achieve the films with porous structure. The surface roughness of the films were studied using scanning electron microscope (SEM). Current–voltage relationship of the devices were characterized in dark at room temperature and under illumination of 100 mW cm−2 light from tungsten halogen lamp at 50 °C. The device utilising the TiO2 film annealed at 400 °C produces the highest short-circuit current density and open-circuit voltage as it posses the smoothest surface topography with the electrolyte. The short-circuit current density and open-circuit voltage of the devices increase with the decreasing grain size of the TiO2 films. The short-circuit current density and open-circuit voltage are 0.6 μA/cm2 and 109 mV respectively.  相似文献   

10.
The broadband absorption enhancement effect in ultrathin molybdenum disulfide(Mo S2)films is investigated.It is achieved by inserting the Mo S2 film between a dielectric film and a one-dimensional silver grating backed with a silver mirror.The broadband absorption enhancement in the visible region is achieved,which exhibits large integrated absorption and short-circuit current density for solar energy under normal incidence.The optical properties of the proposed absorber are found to be superior to those of a reference planar structure,which makes the proposed structure advantageous for practical photovoltaic application.Moreover,the integrated absorption and short-circuit current density can be maintained high for a wide range of incident angles.A qualitative understanding of such broadband absorption enhancement effect is examined by illustrating the electromagnetic field distribution at some selected wavelengths.The results pave the way for developing high-performance optoelectronic devices,such as solar cells,photodetectors,and modulators.  相似文献   

11.
The solar cell performance of the black dye, N719 dye and the cocktail of two dyes on TiO2 films were studied by mean of the utilization as light harvesting electrodes in solid-state FTO|TiO2|dye|CuI|Cr–FTO cells. The power conversion efficiencies of 3.8% and 3.0% are obtained when N719 and black dye were used. When the mixture of 1:1 of two dyes was used, the conversion efficiency rises to 4.6%. In the mixture of N719 and black dye, the N719 dye acts as the aggregation preventer and a co-absorber on TiO2 surfaces. The increased absorption of light by the two dyes results in increase of electron injection thus enhancing both the short-circuit current density and the open circuit voltage contributing to increased power conversion efficiency of the cell.  相似文献   

12.
The present paper reports the preparation of a solar cell which has a cross-sectional scheme: ITO/CdS/PbS, containing a commercially transparent conductive ITO; chemically deposited n-type CdS (340 nm) and absorbed layer of p-type PbS (1400 nm). The structural and optical properties of the constituent films are presented. X-ray diffraction showed that all of the thin films are polycrystalline. Using scanning electron microscopy, the present study revealed that the films have uniform surface morphology over the substrate. The solar cell was characterized by determining the open circuit voltage, short-circuit current density, and J–V under 40 mW/cm2 solar radiation. The efficiency of the solar cells was 1.35%, which is much higher (0.041, 0.5 and 0.1–0.4%) and slightly smaller (1.65%) than some solar cells reported in the literature.  相似文献   

13.
Nitrogen-doped amorphous hydrogenated carbon films (a-C:H) were prepared by mixing nitrogen gas and benzene during dc plasma discharge deposition. The growth rate of the film decreases strongly with increasing nitrogen content in the mixture. The nitrogen concentration in the films was determined by nuclear reaction analysis (NRA) and Auger electron spectroscopy (AES) using suitable calibration samples. The results of AES measurements are generally consistent with NRA values. Nitrogen incorporation in the a-C:H films shows pronounced doping effects as reflected in their optical and electrical properties.Dedicated to Professor J. P. F. Sellschop for his 60th birthday  相似文献   

14.
We have obtained carbon thin films on silicon and glass substrates with multipulse pulsed laser irradiation of graphite under vacuum (p ≈ 2.6 Pa) using a high-frequency series of nanosecond laser pulses (τ = 85 ns, λ = 1060 nm) with pulse repetition frequency f ≈ 10–20 kHz and laser power density q ≈ 15–40 MW/cm2. We established the optimal laser power density and laser pulse repetition frequency for obtaining amorphous nanostructured diamond-like films.  相似文献   

15.
A possibility of deposing carbon films with a high content of C60 and C70 fullerenes from an ablation plasma generated as a result of irradiation of graphite targets by pulsed high-power ion beams is shown. The relative contents of the crystalline diamond-like carbon phase, crystalline fullerene phase, and amorphous carbon phase have been determined by X-ray diffraction analysis for different deposition conditions. The nanohardness and Young’s modulus of the deposited films and their adhesion to the single-crystal silicon substrate have been measured.  相似文献   

16.
This work has been based on studies of the plasma parameters influence and nitrogen addition over on the electrical characteristics of diamond-like carbon (DLC) films deposited by inductively coupled plasma deposition (ICP) system. For these studies, it was used a mixture of methane with different flows of nitrogen, two different pressure processes and three different coil powers. The nitrogenated DLC films, had presented a great variation in their electric and structural properties with the nitrogen variation in the plasma. With the nitrogen addition, an increase in its dielectric constant of 1.7-7.4 to concentration of the 40% of the nitrogen has occurred. For high nitrogen concentrations (80% of nitrogen), the dielectric constant decreases (of 7.4 for 5.0). The resistivity of the films decreases with the nitrogen concentration increase (1.2 × 109 Ω cm). Attributing semiconductors characteristics to DLC films. With the increase of nitrogen concentration, the sp3 hybridization increases, too. These characteristics were excellent for innumerable applications in electronic devices.  相似文献   

17.
Rate equations for the density of excited atoms in a He-Ne discharge are solved for the steady state. The atomistic parameters in the theoretical treatment are replaced by experimental values. Hence inversion density and single pass gain can be calculated as a function of gas mixture, pressure, discharge current and the geometry of the discharge tube. Conditions for maximum inversion density and single pass gain were calculated and compared with experimentally determined values. Good agreement was found for the maximum single pass gain and the related values of discharge current, gas mixture and pressure.  相似文献   

18.
赵慧旭  陈新亮  杨旭  杜建  白立沙  陈泽  赵颖  张晓丹 《物理学报》2014,63(5):56801-056801
金属有机化学气相沉积(MOCVD)法生长的掺硼氧化锌(BZO)薄膜,具有天然的"类金字塔"绒面结构,作为硅基薄膜太阳电池的前电极具有良好的陷光效果.但直接获得的BZO薄膜表面形貌过于尖锐,影响后续硅基薄膜材料生长质量及太阳电池的光电转换效率.本文设计了以一层超薄In2O3:Sn(ITO)薄膜(~4 nm厚度)作为中间层的多层膜,并通过对顶层BZO薄膜的厚度调制,改善BZO薄膜的表面特性,薄膜结构为:glass/底层BZO/ITO/顶层BZO.合适厚度的顶层BZO薄膜有助于获得类似"菜花状"形貌特征,尖锐的表面趋于"柔和",而较厚的顶层BZO薄膜仍然保持"类金字塔状"结构."柔和"的BZO薄膜表面结构有助于提高后续生长薄膜电池的结晶质量.将获得的新型"三明治"结构多层膜应用于p-i-n型氢化微晶硅(μc-Si:H)薄膜太阳电池,相比传统的BZO薄膜,电池的量子效率QE在500—800 nm波长范围提高了~10%,并且电池的Jsc和Voc均有所提高.  相似文献   

19.
Amorphous hydrogenated carbon (a-C:H) films were deposited by magnetron sputtering with a mixture gas of Ar and CH4. The a-C:H films deposited by this method have relatively low internal stress (<1 GPa) compared to some films deposited by conventional deposition process. The effects of substrate bias voltage on microstructure, surface morphology and mechanical properties of the films were investigated by various techniques. It has been found that the polymer-like structure is dominated at low bias voltage (−100 V), while the diamond-like structure with the highest hardness and internal stress is the main feature of the a-C:H films deposited under high bias voltage (−300 V). With increasing the bias voltage further, the feature of diamond-like structure decreases associating with the increase of graphitization. The frictional test shows that the friction coefficient and wear rate of the a-C:H films are depended strongly on structure and mechanical properties, which were ultimately influenced by the deposition method and bias voltage.  相似文献   

20.
韩安军  孙云*  李志国  李博研  何静靖  张毅  刘玮 《物理学报》2013,62(4):48401-048401
衬底温度保持恒定, 在Se气氛下按照一定的元素配比顺序蒸发Ga, In, Cu制备厚度约为0.7 μrm的Cu(In0.7Ga0.3)Se2 (CIGS)薄膜. 利用X射线衍射仪分析薄膜的晶体结构及物相组成, 扫描电子显微镜表征薄膜形貌及结晶质量, 二次离子质谱仪测试薄膜内部元素分布, 拉曼散射谱 分析薄膜表面构成, 带积分球附件的分光光度计测量薄膜光学性能. 研究发现在Ga-In-Se预制层内, In主要通过晶界扩散引起Ga/(Ga+In)分布均匀化. 衬底温度高于450 ℃时, 薄膜呈现单一的Cu(In0.7Ga0.3)Se2相; 低于400℃, 薄膜存在严重的Ga的两相分离现象, 且高含Ga相主要存在于薄膜的上下表面; 低于300 ℃, 薄膜结晶质量进一步恶化. 薄膜表层的高含Ga相Cu(In0.5Ga0.5)Se2以小晶粒形式均匀分布于薄膜表面, 增加了薄膜的粗糙度, 在电池内形成陷光结构, 提高了超薄电池对光的吸收. 加上带隙值较小的低含Ga相的存在, 使电池短路电流密度得到较大改善. 衬底温度在550 ℃–350 ℃变化时, 短路电流密度JSC是影响超薄电池转换效率的主要因素; 而衬底温度Tsub低于300 ℃时, 开路电压VOC和填充因子FF降低已成为电池性能减退的主要原因. Tsub为350 ℃时制备的0.7 μm左右的超薄CIGS电池转换效率达到了10.3%. 关键词: 2薄膜')" href="#">Cu(In,Ga)Se2薄膜 衬底温度 超薄 太阳电池  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号