首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Free radicals/reactive oxygen species (ROS) generated in skin by UV irradiation were measured by electron spin resonance (ESR). To increase the sensitivity of measurement the short life free radicals/ROS were scavenged and accumulated by using the nitroxyl probe 3-carboxy-2,2,5,5-tetrametylpyrrolidine-1-oxyl (PCA). The spatial distribution of free radicals/ROS measured in pig skin biopsies with ESR imaging after UV irradiation corresponds to the intensity decay of irradiance in the depth of the skin. The main part of free radicals/ROS were generated by UVA (320-400 nm) so that the spatial distribution of free radicals reaches up to the lower side of the dermis. In vivo measurements on human skin were performed with a L-band ESR spectrometer and a surface coil integrating the signal intensities from all skin layers to get a sufficient signal amplitude. Using this experimental arrangement the protection of UVB and UVA/B filter against the generation of free radicals/ROS in skin were measured. The protection against ROS and the repair of damages caused by them can be realized with active antioxidants characterized by a high antioxidative power (AP). The effect of UV filter and antioxidants corresponding to their protection against free radicals/ROS in skin generated by UVAB irradiation can be quantified by the new radical sun protection factor (RSF). The RSF indicates the increase of time for staying in the sun to generate the same number of free radicals/ROS in the skin like for the unprotected skin. Regarding the amount of generated free radicals/ROS in skin as an biophysical endpoint the RSF characterizes both the protection against UVB and UVA radiation.  相似文献   

2.
Abstract— Ultraviolet radiation produces free radicals in Skh-1 mouse skin, contributing to photoaging and carcinogenesis. If a mouse model is a general indicator of free radical processes in human skin photobiology, then radical production observed in mouse and human skin should be directly comparative. In this work we show that UV radiation (Λ > 300 nm, 14 μW/cm2 UVB; 3.5 mW/cm2 UVA) increases the ascorbate free radical (Asc.-) electron paramagnetic resonance (EPR) signal in both Skh-1 mouse skin (45%) and human facial skin biopsies (340%). Visible light (Λ > 400 nm; 0.23 mW/cm2 UVA) also increased the Asc.- signal in human skin samples (45%) but did not increase baseline mouse Asc.-, indicating that human skin is more susceptible to free radical formation and that a chromophore for visible light may be present. Using EPR spin-trapping techniques, UV radiation produced spin adducts consistent with trapping lipid alkyl radicals in mouse skin (α-[4-pyridyl 1-oxide]-N-tert-butyl nitrone/alkyl radical adduct; aN= 15.56 G and aH= 2.70 G) and lipid alkoxyl radicals in human skin (5,5-dimethylpyrroline-l-oxide/alkoxyl radical adduct; aN= 14.54 G and aH= 16.0 G). Topical application of the iron chelator Desferal to human skin significantly decreases these radicals (±50%), indicating a role for iron in lipid peroxidation; Desferal has previously been shown to decrease radical production in mouse skin. This work supports the use of the Skh-1 mouse as a predictive tool for free radical formation in human skin. These results provide the first direct evidence for UV radiation-induced free radical formation at near physiological temperatures in human skin and suggest that iron chelators may be useful as photoprotective agents.  相似文献   

3.
The U.S. FDA recently proposed both in vivo and in vitro UVA efficacy tests for sunscreen products with the lower result used to establish the sunscreen's labeled UVA protection claim. The FDA stated their rationale for dual tests was concern that the in vivo test method overemphasizes UVA-2 (320–340 nm) photoprotection. We attribute FDA's observation to the relative lack, compared to sunlight, of UVA-1 (340–400 nm) radiation in the current JCIA UVA solar simulator specification, allowing the method to generate higher UVA protection factors than sunscreens will provide in sunlight. Our work is based upon comparisons of Air Mass 1.0 sunlight to variously filtered UVA solar simulators. Sources near the JCIA UVA-2/UVA limits (8–20%) had a goodness of fit to solar UVA of only 67–79%. We propose that instead of using ratios of UVA-2 to UVA the standard should be a goodness of fit to the UVA region of an Air Mass 1 solar reference spectrum. As the spectral distribution of solar UVA varies much less than UVB, sunlight of reasonable zenith angles of ≤60° will have similar spectral shapes and approximate risk spectrum. Goodness of fit to this spectrum will produce UVA protection values predictive to those actually achieved in sunlight of different zenith angles.  相似文献   

4.
The aim of the study was to investigate the effect of the natural antioxidant quercetin on the photostability of the most widely used combination of UVA (320–400 nm) and UVB (290–320 nm) filters, respectively butyl methoxydibenzoylmethane (BMDBM) and octyl methoxycinnamate (OMC). In order to reproduce the conditions prevalent in commercial sunscreen products, the stabilizing efficacy of quercetin was evaluated in model creams containing BMDBM (3%, wt/wt) together with OMC (4%, wt/wt) and exposed to a solar simulator at an irradiance corresponding to natural sunlight. Quercetin was found to enhance the photostability of the two UV filters in a concentration-dependent way. Addition of quercetin to the sunscreen formulation significantly reduced the photodegradation of BMDBM and OMC from 40.3 ± 2.4 to 27.7 ± 2.6% and from 51.3 ± 2.1 to 42.2 ± 2.0%, respectively. Moreover, comparative photodegradation studies demonstrated that quercetin was much more effective and at a lower concentration than commonly used stabilizer (octocrylene) and antioxidants (vitamin E, butylated hydroxyanisole). In vitro determination of the UVB and UVA protection parameters showed that the quercetin-based formulation fulfilled the official requirements on sunscreen products. Because of its photostabilizing and multiple antioxidant properties, quercetin represents a useful additive for the formulation of effective broad-spectrum sunscreens containing BMDBM and OMC.  相似文献   

5.
This study shows the ESR spectra of oxoiron(IV) porphyrin pi-cation radicals of 1-8 in dichloromethane-methanol (5:1) mixture. We reported in a previous paper that oxoiron(IV) porphyrin pi-cation radicals of 1-4 are in an a(1u) radical state while those of 5-8 are in an a(2u) radical. The ESR spectra (g( perpendicular)(eff) approximately 3.1 and g( parallel)(eff) approximately 2.0) for the a(1u) radical complexes, 1-4, appear quite different from those reported previously for the oxoiron(IV) porphyrin pi-cation radical of 5 (g(y) = 4.5, g(x) = 3.6, and g(z) = 1.99). The unique ESR spectra of the a(1u) radical complexes rather resemble those of compound I from Micrococcus lysodeikticus catalase (CAT) and ascorbate peroxidase (ASP). This is the first examples to mimic the ESR spectra of compound I in the enzymes. From spectral analysis based on a spin Hamiltonian containing an exchange interaction, the ESR spectra of 1-4 can be explained as a moderate ferromagnetic state (J/D approximately 0.3) between ferryl S = 1 and the porphyrin pi-cation radical S' = (1)/(2). The magnitudes of zero-field splitting (D) for ferryl iron and isotropic J value, estimated from the temperature-dependence of the half-saturation power of the ESR signals, are approximately 28 and approximately +8 cm(-1), respectively. A change in the electronegativity of the beta-pyrrole substituent hardly changes the ESR spectral feature while that of the meso-substituent slightly does owing to the change in the E/D value. On the basis of the present ESR results, we propose the a(1u) radical state for compound I of CAT and ASP.  相似文献   

6.
Solar radiation is known to be a major contributor to the development of skin cancer. Most sunscreen formulations, including those with broad spectrum, offer minimal protection in long‐wavelength ultraviolet A1 (UVA1; 370–400 nm) and visible light (VL; 400–700 nm) domain. There is limited information regarding the impact of this broad waveband (VL + UVA1, 370–700 nm) on those with light skin. In this study, ten healthy adult subjects with Fitzpatrick skin phototypes I–III were enrolled. On day 0, subjects' lower back was exposed to a VL + UVA1 dose of 480 J cm?2. A statistically significant increase in erythema immediately after irradiation compared with subjects' baseline nonirradiated skin was observed. Clinically perceptible erythema with VL + UVA1 is a novel finding since the erythemogenic spectrum of sunlight has primarily been attributed to ultraviolet B and short‐wavelength ultraviolet A (320–340 nm). The results emphasize the need for protection against this part of the solar spectra and warrant further investigation.  相似文献   

7.
A Review of Sunscreen Safety and Efficacy   总被引:9,自引:0,他引:9  
The use of sunscreen products has been advocated by many health care practitioners as a means to reduce skin damage produced by ultraviolet radiation (UVR) from sunlight. There is a need to better understand the efficacy and safety of sunscreen products given this ongoing campaign encouraging their use. The approach used to establish sunscreen efficacy, sun protection factor (SPF), is a useful assessment of primarily UVB (290–320 nm) filters. The SPF test, however, does not adequately assess the complete photoprotective profile of sunscreens specifically against long wavelength UVAI (340–400 nm). Moreover, to date, there is no singular, agreed upon method for evaluating UVA efficacy despite the immediate and seemingly urgent consumer need to develop sunscreen products that provide broad-spectrum UVB and UVA photoprotection. With regard to the safety of UVB and UVA filters, the current list of commonly used organic and inorganic sunscreens has favorable toxico-logical profiles based on acute, subchronic and chronic animal or human studies. Further, in most studies, sunscreens have been shown to prevent the damaging effects of UVR exposure. Thus, based on this review of currently available data, it is concluded that sunscreen ingredients or products do not pose a human health concern. Further, the regular use of appropriate broad-spectrum sunscreen products could have a significant and favorable impact on public health as part of an overall strategy to reduce UVR exposure.  相似文献   

8.
Owing to the spectral distribution of solar UV, the UVA component of sunlight is now believed to be the main cause of photoaging and photocarcinogenesis and is much more effective than UVB in inducing peroxidative damage. Consequently, most skin care cosmetic products now include UVA filters in their formulations along with UVB filters. These modern sunscreens should provide and maintain their initial absorbance, hence protection, throughout the entire period of exposure to sunlight. However, not all UVA and UVB filters are sufficiently photostable. In this study, we examine the correlation between the photochemical degradation of sunscreen agents under UVA irradiation, with particular reference to the UVA-absorber 4-tert-butyl-4'-methoxydibenzoylmethane, alone and in combination with other organic UV filters (2-ethylhexyl 4 methoxycinnamate and 2-ethylhexyl 2-cyano-3,3-diphenylacrylate) and their ability to prevent UVA-induced lipid peroxidation. Since antioxidants are also added to formulations to deactivate free radicals generated during UVA exposure, vitamin E and the synthetic antioxidant, bis(2,2,6,6-tetramethyl-1-oxyl-piperidine-4-yl)sebacate, a nitroxide derivative, were also included in this study. By using simple in vitro tests, the results show that a decrease in spectral absorbance of the UV filters correlates in most cases with increased UVA-induced lipid peroxidation; this depends on the specific UV absorber analysed and also on whether they are alone or in combination. Furthermore, the combined presence or absence of antioxidants has a profound effect on this oxidative event. In particular, the nitroxide appears to be a more efficient photo-antioxidant than vitamin E. Similar experiments were also performed under natural sunlight and the results obtained did not differ substantially from those performed under UVA. The results presented and discussed in this work may help in understanding the effects of UVA/UVB absorbers and antioxidants upon the level of UV-induced ROS generated under UVA exposure and in natural sunlight which could be relevant for improving the photoprotection and efficacy of skin care cosmetic formulations.  相似文献   

9.
Human skin biopsies (hair-bearing scalp skin and non-hair-bearing breast skin) were treated with t-butylhydroperoxide, irradiated with UV light (UVR) or irradiated with 694 nm ruby laser red light. Free-radical production and oxidative stress were assessed with electron spin resonance spectroscopy (ESR) using the ascorbate radical as a marker. In comparison with both UVR and t-butyl-hydroperoxide (which readily induce the ascorbate radical in hair-bearing and hairless skin), 694 nm red light does not result in the formation of the ascorbate radical in detectable concentrations. Spin-trapping experiments with the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) showed that while free radicals could be detected after treatment of skin with t-butylhydroperoxide, radicals could not be trapped after laser treatment. Treatment of lasered skin (containing DMPO) with t-butylhydroperoxide produced radical adducts as well as the ascorbate radical, demonstrating that the laser neither depletes endogenous ascorbate nor the preadministered spin trap. It is concluded that 694 nm red light does not induce oxidative stress in human skin in levels comparable either to t-butyl hydroperoxide or UV light.  相似文献   

10.
Thioridazine is a phenothiazine derivative that has been used as an antipsychotic; it rarely causes photosensitization. However, we noticed that this drug induced an erythematous reaction in a photopatch test. Six volunteers were patch tested with various concentrations of thioridazine and irradiated with a range of UVA doses, and the time courses of the color of and blood flow to the test sites were monitored. The free-radical metabolites of thioridazine generated under UVA irradiation and its effects on ascorbate radical formation were examined with an electron paramagnetic resonance (EPR) spectrometer in vitro. As a result, immediate erythema developed during UVA irradiation in most subjects when 1% thioridazine was applied for 48 h and irradiation doses were higher than 4 J cm(-2). Another peak of erythematous reaction was observed 8-12 h after irradiation. The in vitro examination detected an apparent EPR signal, which appeared when 2 mM thioridazine in air-saturated phosphate buffer was irradiated with UVA, whereas this reaction was attenuated under anaerobic conditions. The EPR signal of the ascorbate radical was augmented under both aerobic and anaerobic conditions. Thioridazine-derived oxidants and/or thioridazine radicals generated during UVA irradiation seem to play an important role in this unique phototoxic reaction.  相似文献   

11.
Both the UVB (290-320 nm) and UVA (320-380 nm) regions of sunlight damage human skin cells but, particularly at the longer wavelengths, information is scant concerning the mechanism(s) of damage induction and the roles of cellular defense mechanisms. Following extensive glutathione depletion of cultured human skin fibroblasts, the cells become strongly sensitized to the cytotoxic action of near-visible (405 nm), UVA (334 nm, 365 nm) and UVB (313 nm) but not UVC (254 nm) radiations. In the critical UVB region, the magnitude of the protection afforded by endogenous glutathione approaches that of the protection provided by excision repair. The results suggest that a significant fraction of even UVB damage can be mediated by free radical attack and that a major role of glutathione in human skin cells is to protect them from the cytotoxic action of sunlight.  相似文献   

12.
A quantitative assessment of the light field produced by a Waldmann PDT 1200 lamp is presented. A photodiode detector array capable of measuring a beam diameter of 30 cm was used to map the light field. The irradiance was measured as a function of voltage. For lamp-detector distances of 10 cm (central axis irradiance = 250 mW/cm2), the spatial profile of irradiance was typically Gaussian. For lamp-detector distances of 30 cm (central axis irradiance = 79 mW/cm2), the spatial profile appeared more hemispherical in shape but with some asymmetry. The relative percentage variation between the maximum and minimum irradiance with respect to the central axis irradiance was approximately 13% and 3%, respectively, for a beam width of 12 cm. Beyond a lamp-detector distance of 50 cm (central axis irradiance = 32 mW/cm2), the spatial profile of irradiance was observed to become more crater-like in structure, with a minimum on the central axis and an approximately symmetric peak at a radial distance of 9 cm from the center. The relative percentage variation of this peak irradiance with respect to the central axis irradiance was approximately 17%. At lamp-detector distances of 70 and 90 cm (central axis irradiance = 19 and 13 mW/cm2, respectively), the beam's profile was asymmetric, and the irradiance was observed to increase from the center to a radial distance of 15 cm (beam width 30 cm). For a lamp-detector distance of 70 and 90 cm, the relative percentage variation between the maximum irradiance and the central axis irradiance was approximately 25% and 35%, respectively.  相似文献   

13.
The dried root or rhizome of Goldenseal (Hydrastis canadensis L.) contains several alkaloids including berberine, hydrastine, palmatine and lesser amounts of canadine and hydrastinine. Preparations derived from Goldenseal have been used to treat skin and eye ailments. Berberine, the major alkaloid in Goldenseal root powder, has been used in eye drops to treat trachoma, a disease characterized by keratoconjunctivitis. Berberine and palmatine are also present in extracts from Berberis amurensis Ruprecht (Berberidaceae) which are used to treat ocular disorders. We have previously shown that Goldenseal alkaloids are phototoxic to keratinocytes (Chem Res Toxicol. 14, 1529, 2001; ibid 19, 739, 2006) and now report their effect on human lens and retinal pigment epithelial cells. Human lens epithelial cells (HLE-B3) were severely damaged when incubated with berberine (25 microM) and exposed to UVA (5 J cm(-2)). Under the same conditions, palmatine was less phototoxic and hydrastine, canadine and hydrastinine were inactive. Moderate protection against berberine phototoxicity was afforded by the antioxidants ascorbate (2 mM) and N-acetylcysteine (5 mM). When exposed to UVA (5 J cm(-2)) both berberine (10 microM) and palmatine (10 microM) caused mild DNA damage as determined by the alkaline comet assay which measures single strand breaks. Berberine and palmatine are the only Goldenseal alkaloids with appreciable absorption above 400 nm. Because light at wavelengths below 400 nm is cut off by the anterior portion of the adult human eye only berberine and palmatine were tested for phototoxicity to human retinal pigment epithelial (hRPE) cells. Although berberine did damage hRPE cells when irradiated with visible light (lambda > 400 nm) approximately 10 times higher concentrations were required to produce the same amount of damage as seen in lens cells. Palmatine was not phototoxic to hRPE cells. Neither berberine nor palmatine photodamaged DNA in hRPE. Infusions of Goldenseal are estimated to contain approximately 1 mM berberine, while in tinctures the alkaloid concentration may be more than 10 times higher. Our findings show that eyewashes and lotions derived from Goldenseal or containing berberine must be used with caution when the eyes are exposed to bright sunlight but that oral preparations are not likely to cause ocular phototoxicity.  相似文献   

14.
Skin can be exposed to high-intensity UV-radiation in hot countries and during sunbed use; however, the free-radical damage at these intensities is unknown. We used electron spin resonance spectroscopy to measure free-radical generation in ex vivo human skin/substitutes +/- the spin-trap 5,5 dimethyl-1-pyrroline N-oxide (DMPO) exposed to solar-irradiation equivalent to Mediterranean sunlight. Skin-substitutes, model DNA-photosensitizer systems, lipids and proteins were also irradiated with low-intensity UVA/visible light. Without DMPO a broad singlet was detected (using both irradiations) in skin/substitutes, nail-keratin, tendon-collagen, phospholipid and DNA+melanin or riboflavin. In addition to lipid-derived (tentatively tert-alkoxyl/acyl-) and protein radicals detected with DMPO at lower intensities, isotropic carbon-, additional oxygen- and hydrogen-adducts were detected in solar-irradiated skin/substitutes at higher intensities. Carbon-adducts were detected in UVA-irradiated human skin cells, DNA+melanin or riboflavin and soybean-phospholipid. Anisotropic protein-adducts, comparable to adducts in solar-irradiated tendon-collagen, were absent in UVA-irradiated skin fibroblasts suggesting the trapping of extracellular collagen radicals. Absence of hydrogen-adducts in fibroblasts implies formation in the extracellular compartment. We conclude damage at high intensities is part cellular (carbon- and oxygen-radicals) and part extracellular (protein- and hydrogen/H(+)+e(-) ), and skin substitutes are suitable for sunscreen testing. While UVA absorption and lipid-oxidation is direct, DNA and protein-oxidation require photosensitisation.  相似文献   

15.
The sun protection factor (SPF) of sunscreens is determined using samples applied with a thickness of 2 mg cm(-2). Sunscreen users, however, typically apply sunscreen nonuniformly and in smaller amounts. The objective of our study was to verify whether sunscreen reapplication increases the amount and regularity of the product on the skin. Volunteers were asked to apply an SPF 6 sunscreen on their forearms and reapply it 30 min later on one forearm. Tape-strips were used to collect five samples from two different sites on each forearm. The concentration of benzophenone-3 in the samples was measured and the total amount of sunscreen was estimated using high-performance liquid chromatography. The median amount of sunscreen film was 0.43 mg cm(-2) (0.17-1.07) after one application and 0.95 mg cm(-2) (0.18-1.91) after two applications (P = 0.002). No significant difference was found in the film uniformity. Though sunscreen reapplication increases the amount of product on the skin, levels are still lower than the recommended amount, confirming that the protection level is less than the product-stated SPF. Our results are the first in the literature to support the recommendation for reapplying sunscreens. Based on our results, we recommend that sunscreens be labeled using qualitative measures.  相似文献   

16.
The ultraviolet A (320-400 nm) (UVA) exposure of sunscreen-protected skin depends not just on the absorption characteristics of the product but also on a number of other factors. These include the amount of sunscreen applied and how it is spread over the skin. The importance of the spectral absorption of a sunscreen compared with these other two variables in controlling cutaneous UVA exposure is examined here using an analysis of variance approach. The results demonstrate that by far the most important factor is the application of a liberal quantity of sunscreen. Less important is to spread it uniformly, and least important is the precise shape of the sunscreen-absorption spectrum, providing, of course, the spectrum extends into the UVA region.  相似文献   

17.
The in vivo reflectance spectra of Caucasian skin, coated with preparations containing sunscreen vehicle, vehicle with olive oil and vehicle with the UVB and UVA absorbers 2-ethylhexyl-4-methoxycinnamate and 4-t-butyl-4'-methoxydibenzoylmethane were determined. All preparations reduced the reflectance of skin throughout the UVA spectral range (320 to 400 nm), with the sunscreen preparations containing the UVB and UVB plus UVA absorbers reducing the reflectance more than the sunscreen vehicle alone. This phenomenon, which facilitates the penetration of UV radiation to the lower epidermis and dermal layers of skin and therefore lessens sunscreen efficacy, is attributed to optical coupling mediated by refractive index matching of the sunscreen to the upper epidermis. The greater reduction in skin diffuse reflectance caused by sunscreens containing methoxycinnamate is associated with this compound's high refractive index. Also, by determining the excitation spectra of the autofluorescence originating from the dermal layer of skin, the transmission spectra of the various components of sunscreen on skin were established, and these were in good general agreement with previously published spectra.  相似文献   

18.
UV radiation is known to cause acute and chronic eye and skin damage. The present case report describes a 90 min accidental exposure to UV-C radiation of 26 medical school students. Germicidal lamps were lit due to a malfunctioning of the timer system. Several hours after irradiation exposure, all subjects reported the onset of ocular symptoms, subsequently diagnosed as photokeratitis, and skin damage to the face, scalp and neck. While the ocular symptoms lasted 2-4 days, the sunburn-like condition produced significant erythema followed by deep skin exfoliation. The irradiation was calculated to be approximately 700 mJ cm(-2) absorbed energy, whereas the actual radiation emitted by the lamps was 0.14 mW cm(-2) (the radiometric measurements confirmed these calculi, because the effective irradiance measured from the height of the autopsy table to about 1 m under the UV-C lamp varied from 0.05 to 0.25 mW cm(-2)) but, more likely, the effective irradiance, according to skin phototype and symptoms, was between 50 and 100 mJ cm(-2). The ocular and skin effects produced by such a high irradiation (largely higher than that accepted by the American Conference of Governmental Industrial Hygienists [ACGIH] threshold limit values [TLVs]) appeared reversible in a relatively short time.  相似文献   

19.
In the past few years, the cellular effects of ultraviolet (UV) irradiation induced in skin have become increasingly recognized. Indeed, it is now well known that UV irradiation induces structural and cellular changes in all the compartments of skin tissue. The generation of reactive oxygen species (ROS) is the first and immediate consequence of UV exposure and therefore the quantitative determination of free radical reactions in the skin during UV radiation is of primary importance for the understanding of dermatological photodamage. The RSF method (radical sun protection factor) herein presented, based on electron spin resonance spectroscopy (ESR), enables the measurement of free radical reactions in skin biopsies directly during UV radiation. The amount of free radicals varies with UV doses and can be standardized by varying UV irradiance or exposure time. The RSF method allows the determination of the protective effect of UV filters and sunscreens as well as the radical induction capacity of self-tanning agents as dihydroxyacetone (DHA). The reaction of the reducing sugars used in self-tanning products and amino acids in the skin layer (Maillard reaction) leads to the formation of Amadori products that generate free radicals during UV irradiation. Using the RSF method three different self-tanning agents were analyzed and it was found, that in DHA-treated skin more than 180% additional radicals were generated during sun exposure with respect to untreated skin. For this reason the exposure duration in the sun must be shortened when self-tanners are used and photoaging processes are accelerated.  相似文献   

20.
The entomopathogenic hyphomycete Metarhizium anisopliae has been used in programs of agricultural pest and disease vector control in several countries. Exposure to simulated solar radiation for a few hours can completely inactivate the conidia of the fungus. In the present study we determined the effect of exposures to full-spectrum sunlight and to solar ultraviolet A radiation at 320-400 nm (UVA) on the conidial culturability and germination of three M. anisopliae strains. The exposures were performed in July and August 2000 in Logan, UT. The strains showed wide variation in tolerance when exposed to full-spectrum sunlight as well as to UVA sunlight. Four-hour exposures to full-spectrum sunlight reduced the relative culturability by approximately 30% for strain ARSEF 324 and by 100% for strains ARSEF 23 and 2575. The relative UV sensitivity of the two more sensitive strains was different under solar UV from that under ultraviolet B radiation at 280-320 nm (UVB) in the laboratory. Four-hour exposures to solar UVA reduced the relative culturability by 10% for strain ARSEF 324, 40% for strain ARSEF 23 and 60% for strain ARSEF 2575. Exposures to both full-spectrum sunlight and UVA sunlight delayed the germination of the surviving conidia of all three strains. These results, in addition to confirming the deleterious effects of UVB, clearly demonstrate the negative effects of UVA sunlight on the survival and germination of M. anisopliae conidia under natural conditions. The negative effects of UVA in sunlight also emphasize that the biological spectral weighting functions for this fungus must not neglect the UVA wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号