首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,6,9-trioxaundecanedioic acid (3,6,9-tddaH2) reacts with Mn(CH3CO2)2·4H2O in ethanol to give [Mn(3,6,9-tdda)]·H2O (1). Recrystallization of 1 from methanol gives crystals of [Mn(3,6,9-tdda) (H2O)2]·2H2O (2). Complex 1 reacts with an ethanolic solution of 1,10-phenanthroline (phen) to give {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3). All of the complexes are extremely water soluble. Complexes 2 and 3 were structurally characterised. The manganese(II) ion in 2 is seven coordinate, with an approximately pentagonal bipyramidal O7 coordination sphere. The axial donors are water molecules and the pentagonal plane is occupied by the diacid, acting as a pentadentate ligand through the three ethereal oxygens and one oxygen atom from each of the carboxylate functions. In complex 3 the manganese(II) ion is six-coordinate, being bound to two bidentate phenanthroline ligands and to the carboxylate oxygen atoms from two symmetry related diacids which are coordinated in a cis fashion. The structure consists of polymeric chains, with diacid ligands bridging the manganese ions. There is π-π stacking of pairs of phenanthroline ligands on adjacent chains, running along both the z and y directions.  相似文献   

2.
Abstract

Mn(II) cations in the crystals of trisaquobis(μ-thiophen-2-carboxylato-O,O′)(thiophen-2-carboxylato-O)manganese(II) monohydrate are bridged by oxygen atoms donated by bidentate carboxylic groups of two thiophen-2-carboxylate ligands. In addition, each Mn(II) ion is coordinated by an oxygen atom of a monodentate carboxylic group of this ligand and three oxygen atoms of water molecules. The coordination around the Mn(II) cation is octahedral. The bridging of the ligands results in molecular ribbons propagating in the c-direction of the crystal held together by C?H…O hydrogen bonds. The crystal structure of diaquobis(μ-furan-3-carboxylato-O,O′)di(μ-furan-3-carboxylato-O,O)(μ-aqua-O)manganese(II) consists of dinuclear structural units. In each molecule Mn(II) cations are O,O′ bridged by oxygen atoms of bidentate carboxylic groups of two furan-3-carboxylate ligands and have a water located between the Mn cations. The units are O,O′ bridged to Mn(II) ions located in adjacent units by bidentate oxygen atoms, forming molecular ribbons extending in the c-direction. Octahedral coordination around each Mn(II) ion is completed by two water molecules. The octahedra around two adjacent metal ions in the unit share a common apex - the bridging oxygen atom of the water molecule. The ribbons are held together by C?H…O hydrogen bonds between furan ring oxygen atoms and the carbon atoms of adjacent furan rings.  相似文献   

3.
Two pentadentate ligands built on the 2-aminomethylpiperidine structure and bearing two tertiary amino and three oxygen donors (three carboxylates in the case of AMPTA and two carboxylates and one phenolate for AMPDA-HB) were developed for Mn(II) complexation. Equilibrium studies on the ligands and the Mn(II) complexes were carried out using pH potentiometry, 1H-NMR spectroscopy and UV-vis spectrophotometry. The Mn complexes that were formed by the two ligands were more stable than the Mn complexes of other pentadentate ligands but with a lower pMn than Mn(EDTA) and Mn(CDTA) (pMn for Mn(AMPTA) = 7.89 and for Mn(AMPDA-HB) = 7.07). 1H and 17O-NMR relaxometric studies showed that the two Mn-complexes were q = 1 with a relaxivity value of 3.3 mM−1 s−1 for Mn(AMPTA) and 3.4 mM−1 s−1 for Mn(AMPDA-HB) at 20 MHz and 298 K. Finally, the geometries of the two complexes were optimized at the DFT level, finding an octahedral coordination environment around the Mn2+ ion, and MD simulations were performed to monitor the distance between the Mn2+ ion and the oxygen of the coordinated water molecule to estimate its residence time, which was in good agreement with that determined using the 17O NMR data.  相似文献   

4.
The reactions of 2-mercatopyrimidine with MCl(2) (M = Mn(2+) or Co(2+)) in solvothermal conditions result single crystals of Mn(2-pymS)(2)1 and Co(2-pymS)(2)2. The two complexes both have the diamond-like topology frameworks, which could be traced back to the similar way of pyrimidine rings acting as the asymmetric bridging ligands. Interestingly, although they have similar chemical formulas, structural analysis by single-crystal X-ray diffraction studies reveals that the sulfur atoms play different roles in 1 and 2. For 1, the Mn ion lies in a distorted octahedral environment bonded to four nitrogen atoms and two sulfur atoms, whereas the Co ion in a distorted tetrahedral environment only coordinates to nitrogen atoms of pyrimidine ligands in the case of Co(2-pymS)(2)2. More interestingly, although magnetic measurements for both complex 1 and 2 indicate long range magnetic ordering and spin canting below the critical temperature (20 K for 1 and 42.9 K for 2), a hysteresis loop can be observed even at 40 K, which is just below the T(C) for complex 2, which is distinctly harder than 1.  相似文献   

5.
1 INTRODUCTION Water oxidation to oxygen gas by photo- synthetic apparatus of green plants and cyano- bacteria is the origin of this gas in the atmosphere. The water oxidation center is a tetranuclear, oxide- bridged manganese cluster with O,N-based peri- pheral ligation by amino acid side-chain group[1, 2]. The binding of aqua to the Mn site may be impor- tant to the oxidation of aqua for producing dioxygen. 1,10-Phenanthroline has been adopted to simulate coordination sphere of manga…  相似文献   

6.
1 INTRODUCTION Chemistry of manganese cluster has become an attractive research field because of the involvement of manganese in several biological redox-active sys- tems[1,2], especially in the oxygen-evolving complex (OEC) of photosystem Ⅱ (PSⅡ) in green plants[3]. It was thought that the coordination environment of Mn in OEC contains O and N donors, and the bind- ing of aqua to the Mn site may be important to the oxidation of aqua for the evolution of dioxygen[4, 5]. In recent …  相似文献   

7.
The title compound has been prepared and its crystal structure determined by X-ray diffraction methods. The complex salt consists of Mn(II) complex cations, benzoate anions and lattice water molecules. Mn(II) assumes a distorted octahedral geometry defined by two 1,10-phenanthroline (phen) ligands, a Cl? ion and a water molecule. A comparison of bond distances and bond angles suggests electrostatic interaction between Mn(II) and coordinated N atoms. The nitrobenzoate anion does not coordinate to the Mn atom but links with the complex cation via O?H···O hydrogen bonds. Aromatic stacking occurs between phen rings and between phen and benzoate.  相似文献   

8.
The mononuclear title complex, [MnCl2(C3H4N2)2(H2O)2], is located on a crystallographic inversion center. The MnII ion is coordinated by two imidazole ligands [Mn—N = 2.2080 (9) Å], two Cl atoms [Mn—Cl = 2.5747 (3) Å] and two water molecules [Mn—O = 2.2064 (8) Å]. These six monodentate ligands define an octahedron with almost ideal angles: the adjacent N—Mn—O, N—Mn—Cl and O—Mn—Cl angles are 90.56 (3), 92.04 (2) and 90.21 (2)°, respectively. Hydrogen bonds between the coordinated water molecules and Cl atoms form a two‐dimensional network parallel to (100) involving R42(8) rings. The two‐dimensional networks link into a three‐dimensional framework through weaker N—H...Cl interactions. Thermogravimetric analysis results are in accordance with the water‐coordinated character of the substance and its dehydration in two successive steps.  相似文献   

9.
Cluster compounds of germanium exhibiting germanium-germanium bonds, where the germanium atoms are additionally bound to transition metal ligands, are rare. Here a synthetic pathway to such cluster compounds is described, starting from metastable Ge I halide solutions leading to the two cluster compounds Ge4Br4[Mn(CO)5]4 and Ge6Br2[Mn(CO)5]6, being the first examples of germanium cluster compounds bearing Mn(CO)5 ligands. The Ge6 compound exhibits a novel arrangement of germanium atoms that has not been previously observed in ligand stabilized cluster compounds of germanium, neither with organic nor with transition metal ligands. The bonding situation inside the cluster compounds is discussed, together with a possible reaction pathway that opens the way to metalloid cluster compounds of germanium exhibiting Mn(CO)5 ligands.  相似文献   

10.
Four Mn(II) complexes bound to a neutral bis-benzimidazole diamide ligand N,N'-bis(2-methyl benzimidazolyl 2,2'-oxy-diethanamide) (GBOA) have been synthesized and characterized. Anionic ligand associated with the complexes varies as Cl- CH3COO-, SCN- and ClO4-. X-ray structure of one of the complexes [Mn(GBOA)2(H2O)2]Cl(2)·4H2O was solved and shows that the Mn(II) ion is hexacoordinate. Two equatorial positions are occupied by benzimidazole imine nitrogen atoms while the other two sites are occupied by amide carbonyl oxygens. The imine nitrogen and carbonyl oxygens are bound to Mn(II) by different arms of the two ligands while axial sites are occupied by two water molecules. Two Cl- anions are outside the coordination sphere and form an extensive 3D H-bonded network. Axially distorted octahedral geometry is confirmed for all the four complexes by low temperature EPR spectroscopy. Distortion parameter D was found to be similar for [Mn(GBOA)2(H2O)2]Cl(2)·4H2O and [Mn(GBOA)2(H2O)2]·(CH3COO)2·H2O. Cyclic voltammograms have been obtained for all the four complexes and E(1/2) values are dependent on the anionic ligand being in the coordination sphere or outside. [Mn(GBOA)2(H2O)2]Cl(2)·4H2O and [Mn(GBOA)2(H2O)2]·(CH3COO)2·H2O carry out the selective oxidation of N-benzyldimethylamine, and 1-methyl-pyrollidine to their respective carbonyl products with catalytic efficiency of 35-50%.  相似文献   

11.
Reaction of the Mn4O4(6+) "cubane" core complex, Mn4O4L6 (1) (L = diphenylphosphinate, Ph2PO2-), with a hydrogen atom donor, phenothiazine (pzH), forms the dehydrated cluster Mn4O2L6 (2), which has lost two mu-oxo bridges by reduction to water (H2O). The formation of 2 was established by electrospray mass spectrometry, whereas FTIR spectroscopy confirmed the release of water molecules into solution during the reduction of 1. UV-vis and EPR spectroscopies established the stoichiometry and chemical form of the pzH product by showing the production of 4 equiv of the neutral pz radical. By contrast, the irreversible decomposition of 1 to individual Mn(II) ions occurs if the reduction is performed using electrons provided by various proton-lacking reductants, such as cobaltocene or electrochemical reduction. Thus, cubane 1 undergoes coupled four-electron/four-proton reduction with the release of two water molecules, a reaction formally analogous to the reverse sequence of the steps that occur during photosynthetic water oxidation leading to O2 evolution. 1H NMR of solutions of 2 reveal that all six of the phosphinate ligands exhibit paramagnetic broadening, due to coordination to Mn ions, and are magnetically equivalent. A symmetrical core structure is thus indicated. We hypothesize that this structure is produced by the dynamic averaging of phosphinato ligand coordination or exchange of mu-oxos between vacant mu-oxo sites. The paramagnetic 1H NMR of water molecules in solution shows that they are able to freely exchange with water molecules that are bound to the Mn ion(s) in 2, and this exchange can be inhibited by the addition of coordinating anions, such as chloride. Thus, 2 possesses open or labile coordination sites for water and anions, in contrast to solutions of 1, which reveal no evidence for water coordination. Complex 2 exhibits greater paramagnetism than that of 1, as seen by 1H NMR, and it possesses a broad (440 G wide) EPR absorption, centered at g = 2, that follows a Curie-Weiss temperature dependence (10-40 K) and is visible only at low temperatures, compared to EPR-silent 1. Its comparison to a spin-integration standard reveals that 2 contains 2 equiv of Mn(II), which is in agreement with the formal oxidation state of 2Mn(II)2Mn(III) that was derived from the titration. The EPR and NMR data for 2 are consistent with a loss of two of the intermanganese spin-exchange coupling pathways, versus 1, which results in two "wingtip" Mn(II) S = 5/2 spins that are essentially magnetically uncoupled from the diamagnetic Mn2O2 base. Bond-enthalpy data, which show that O2 evolution via the reaction 1-->2 + O2, is strongly favored thermodynamically but is not observed in the ground state due to an activation barrier, are included. This activation barrier is hypothesized to arise, in part, from the constraining effect of the facially bridging phosphinate ligands.  相似文献   

12.
The synthesis, molecular and crystal structure of bis(triethanolamine)Mn(II) saccharinate, [Mn(tea)2](sac)2 are reported. The configuration of the tea ligands results in an unusual example of coordination number seven for the Mn(II) ion. The two triethanolamine (tea) ligands coordinate to the Mn(II) ion forming a monocapped trigonal prism geometry, in which one of the tea ligands behaves as a tridentate ligand, while the other one acts as a tetradentate donor. The free and coordinated hydroxyl hydrogens of the tea ligands are involved in hydrogen bonding with the amine nitrogen, carbonyl and sulfonyl oxygens of the neighbouring sac ions to form a three-dimensional infinite network. A weak π–π interaction between the phenyl rings of the sac ions also occurs.  相似文献   

13.
The use of di-2-pyridyl ketone oxime, (py)2CNOH, in manganese carboxylate chemistry has been investigated. Using a variety of synthetic routes complexes [Mn(O2CPh)2{(py)2CNOH}2].0.25H2O (1.0.25H2O), Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Br2].MeCN (2.MeCN), [Mn4(O2CPh)2{(py)2CO2}2{(py)2CNO}2Cl(2)].2MeCN (3.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2Br2].2MeCN (4.2MeCN), [Mn4(O2CMe)2{(py)2CO2}2{(py)2CNO}2(NO3)2].MeCN.H2O (5.MeCN.H2O) and [Mn2(O2CCF3)2(hfac)2{(py)2CNOH}2] (6) have been isolated in good yields. Remarkable features of the reactions are the in situ transformation of an amount of (py)2CNOH to yield the coordination dianion, (py)2CO2(2-), of the gem-diol derivative of di-2-pyridyl ketone in 2-5, the coordination of nitrate ligands in 5 although the starting materials are nitrate-free and the incorporation of CF3CO2- ligands 6 in which was prepared from Mn(hfac)(2).3H2O (hfac(-)= hexafluoroacetylacetonate). Complexes 2-4 have completely analogous molecular structures. The centrosymmetric tetranuclear molecule contains two MnII and two MnIII six-coordinate ions held together by four mu-oxygen atoms from the two 3.2211 (py)2CO2(2-) ligands to give the unprecedented [MnII(mu-OR)MnIII(mu-OR)2MnIII(mu-OR)MnII]6+ core consisting of a planar zig-zag array of the four metal ions. Peripheral ligation is provided by two 2.111 (py)2CNO-, two 2.11 PhCO2- and two terminal Br- ligands. The overall molecular structure 5 of is very similar to that of 2-4 except for the X- being chelating NO3-. A tentative reaction scheme was proposed that explains the observed oxime transformation and nitrate generation. The CF3CO2- ligand is one of the decomposition products of the hfac- ligand. The two Mn(II) ions are bridged by two neutral (py)2CNOH ligands which adopt the 2.0111 coordination mode. A chelating hfac- ligand and a terminal CF3CO2- ion complete a distorted octahedral geometry at each metal ion. The CV of complex reveals irreversible reduction and oxidation processes. Variable-temperature magnetic susceptibility studies in the 2-300 K range for the representative tetranuclear clusters 2 and 4 reveal weak antiferromagnetic exchange interactions, leading to non-magnetic ST = 0 ground states. Best-fit parameters obtained by means of the program CLUMAG and applying the appropriate Hamiltonian are J(Mn(II)Mn((III))=-1.7 (2), -1.5 (4) cm(-1) and J(Mn(III)Mn(III))=-3.0 (2, 4) cm(-1).  相似文献   

14.
Biphenyldiyl-2,2'-bis(methylphosphonic acid) (BBMP) and benzenetriyl-1,3,5-tris(methylphosphonic acid) (BTMP) as ligands have been synthesized from diphenic acid and trimesic acid, respectively. Cu, Mn and Co complexes of BBMP have been prepared but similar complexes of BTMP did not crystallize. However, a copper compound with added 4,4'-bipyridyl was obtained. This copper complex is dimeric in which the dimers are linked into a supramolecular compound through the bipyridyl groups. Interestingly, the structure was solved in P1 with an unusual correlation between the ligand oxygen bond distances and the copper bond distances to water molecules. The Mn and Co BBMP complexes are isostructural in which the BBMP ligands phenyl groups rotate around each other to bridge the metal atoms forming 1:1 linear chains. There are four water molecules bonded to Co that can be removed reversibly. In the case of the Cu compound, one Cu is square planar bonded to four phosphonate oxygen atoms from two BBMP molecules. The second copper is six coordinate adding two water molecules in the axial positions. The two copper ions alternate forming a one dimensional chain but with ligands bonding the chain on both sides. The four coordinate copper atoms are chelated by two BBMP ligands utilizing one oxygen atom from the two phosphonate groups of each ligand and a second oxygen atom from these groups that bridge across the Cu atoms to bond to the six coordinate copper ion. A detailed synthetic procedure for each of the two ligands is supplied as ESI.  相似文献   

15.
Two supramolecular architectures, [Mn(3‐bpd)2(NCS)2(H2O)2]·2H2O ( 1 ) and {[Mn(bpe)(NCS)2(H2O)2]·(3‐bpd)·(bpe)·H2O}n ( 2 ) [bpe = 1,2‐bis(4‐pyridyl)ethylene and 3‐bpd = 1,4‐bis(3‐pyridyl)‐2,3‐diaza‐1,3‐butadiene] have been synthesized and characterized by spectroscopic, elemental and single crystal X‐ray diffraction analyses. Compound 1 crystallizes in the monoclinic system, space group P21/c, with chemical formula C26H28Mn N10O4S2, a = 9.1360(6), b = 9.7490(6), c = 17.776(1) Å, β = 93.212(1)°, and Z = 2 while compound 2 crystallizes in the orthorhombic system, space group P212121, with chemical formula C38H36Mn1N10O3S2, a = 14.1902(6), b = 15.4569(7), c = 18.2838(8) Å, α = β = γ = 90°, and Z = 4. Structural determination reveals that the coordination geometry at Mn(II) in compound 1 or 2 is a distorted octahedral which consists of two nitrogen donors of two NCS?ligands, two oxygen donors of two water molecules, and two nitrogen donors of two 3‐bpd ligands for 1 and two dpe ligands for 2 , respectively. The two 3‐bpd ligands in 1 adopt a monodentate binding mode and the dpe in 2 adopts a bismonodentate bridging mode to connect the Mn(II) ions forming a 1D chain‐like coordination polymer. Both the π‐π stacking interactions between the coordinated and the free pyridyl‐based ligands and intermolecular hydrogen bonds among the coordinated and the crystallized water molecules and the free pyridyl‐based ligands play an important role in construction of these 3D supramolecular architectures.  相似文献   

16.
The hydrothermal synthesis and structure of the coordination polymer [Mn(3,5-pdc)·2H2O] (3,5-pdc=3,5-pyridinedicarboxylic acid) with a novel seven-coordination mode of Mn(II) ion is reported. The metal ion center is in the pentagonal bipyramid coordination environment. Oxygen atoms from two waters hold the axial sites, and four oxygen atoms from two chelated carboxylic groups and one nitrogen atom from one pyridine ring occupy the five planar sites. This novel coordination environment of Mn(II) ion may be due to the smaller steric effect of chelated carboxylic groups. Each 3,5-pdc ligand is in the same coordination mode to bridge three Mn(II) ion centers and lead to two-dimensional layers with water molecules between the layers. Hydrogen bonds, which are generated by these water molecules and carboxylic groups, connect the layers to form a three-dimensional structure.  相似文献   

17.
The trinuclear manganese complex [Mn(3)O(4)(phen)(4)(H(2)O)(2)](NO(3))(4).2.5H(2)O, 1 (where, phen = 1,10-phenanthroline), has been synthesized by the Ce(IV) oxidation of a concentrated solution of manganese(II) acetate and phen in 1.6 N nitric acid. The complex crystallizes in the triclinic space group P&onemacr; with a = 10.700(2) ?, b = 12.643(3) ?, c = 20.509(4) ?, alpha = 78.37(3) degrees, beta = 83.12(3) degrees, gamma = 82.50(3) degrees, and Z = 2. The structure was solved by direct methods and refined by least-squares techniques to the conventional R (R(w)) factors of 0.055 (0.076) based on 4609 unique reflections with F(o) >/= 6.0sigma(F(o)). The structure of the cation consists of an oxo-bridged Mn(3)O(4)(4+) core, with the geometry of the manganese atoms being octahedral. The coordination polyhedron of one of the manganese atoms (Mn(1)) consists of two &mgr; oxo ligands and two pairs of nitrogen atoms of two phen moieties, whereas that of each of the remaining two manganese atoms consists of three &mgr;-oxo ligands, two nitrogen atoms of a phen moiety, and the oxygen atom of a water molecule. The complex represents the second example for water coordination to manganese(IV) centers in complexes with a Mn(3)O(4)(4+) core. Optical spectra in ligand buffer (pH 4.5) reveal complete conversion of the complex into a Mn(III)Mn(IV) species. The observed room-temperature (298 K) magnetic moment of 3.75 &mgr;(B) indicates the presence of strong antiferromagnetic coupling in the complex.  相似文献   

18.
A novel one-dimensional manganese(Ⅱ) complex containing nitronyl nitroxide radical [Mn2(IM2-py)2(Ac)2((μ1.1-N3)(μ1,3-N3) . EtOH]n was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group p21/n. Each Mn(Ⅱ) ion is six-coordinated in a distorted octahedral environment. The two N atoms of the nitronyl nitroxide radical and the two O atoms of acetate ligands are in the equatorial plane, whereas the two different azido bridging ligands are in trans axial position. Mn(Ⅱ) ions are linked by nitrogen atom of μ1,1-azido and oxygen atoms of two carboxy groups to form a Mn-Mn unit. Mn-Mn units are linked by azido ligands through u1,3 bridging style to form a one-dimensional chain. The compound is connected by the coordination bonds,π-π interactions and hydrogen bonds as a three-dimensional structure. Magnetic susceptibility data support that there are stronger antiferromagnetic interactions between the radical and Mn(Ⅱ) ion, weak antiferromagnetic inter  相似文献   

19.
From the reaction of [Mn(III)(3)(micro-O)(micro-CH(3)CO(2))(6)]CH(3)CO(2) (manganese(III) acetate) and 2-anilino-4,6-di-tert-butylphenol (1:3) in methanol under anaerobic conditions, dark brown-black crystals of [Mn(III)(L(ISQ))(2)(L(AP))] (1) were obtained in approximately 30% yield. (L(AP))(-) represents the closed-shell o-aminophenolate(-) form of the above ligand, and (L(ISQ))(-) is the monoanionic pi radical form o-iminobenzosemiquinonate(-) (S(rad) = 1/2). Complex 1 can be deprotonated at the (L(AP))(-) ligand and one-electron-oxidized by air, yielding crystals of [Mn(IV)(L(ISQ))(2)(L(AP)-H)] (2), where (L(AP)-H)(2-) represents the closed-shell, dianionic o-amidophenolate(2-) form of the above ligand. The structures of 1 and 2 have been determined by X-ray crystallography at 100 K. The protonation and oxidation levels of the ligands and of the metal ions have been unequivocally established: both complexes contain two pi radical ligands, 1 contains a Mn(III) ion, and 2 contains a Mn(IV) ion. The spins of the radicals (S(rad) = 1/2) couple strongly antiferromagnetically with the d(4) and d(3) configuration of the Mn ions in 1 and 2, respectively, yielding the observed ground states of S = 1 for 1 and S = (1)/(2) for 2. This has been established by temperature-dependent susceptibility measurements (2-300 K) and S- and X-band EPR spectroscopy.  相似文献   

20.
The title compound [Mn(DPMT)2Cl2(H2O)2] (DPMT = 1 -[[2-(2,4-dichlorophenyl)-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) was synthesized by the reaction of MnCl2-4H2O and DPMT in ethanol solution and its structure was determined by single-crystal X-ray diffraction. The crystal belongs to monoclinic, space group P2/c with a=23.913(4), b=7.8883(13), c=8.6291(14) (A),β=95.816(3)°,V=1619.4(5)(A)3,Z=2,C24H26Cl6MnN6O6 Mr=762.15, Dc=1.563 g/cm3, μ=0.950 mm'1, S=1.045, F(000)=774, R=0.0462 and wR=0.0981. The molecular structure is a centrosymmetric conformation, and two ligands are symmetrically located on both sides of the Mn atom. The manganese atom is surrounded by two nitrogen atoms from ligands, two chlorine atoms and two oxygen atoms from water molecules to form a slightly distorted octahedral geometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号