首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 459 毫秒
1.
2.
刘永军  刘英 《结构化学》2006,25(12):1475-1480
1INTRODUCTION In the past decades,mercury has been a very use-ful electrode material in the fabrication and electrical measurement of molecule modified metal-metal and metal-semiconductor junctions.Majda et al.[1,2]constructed a symmetric Hg-SCn-CnS-Hg junction to study the electron tunneling properties of alkanethio-late bilayers.Whitesides et al.[3~5]fabricated Hg-SAM/SAM-Metal(Ag,Au,Cu)junctions to investi-gate the electrical breakdown voltage of self-assem-bled monolayers(SAMs…  相似文献   

3.
Two planar hydrogen-bonded complexes of FArH and acetylene were found to be stable using second-order M?ller-Plesset perturbation theory (MP2) with 6-311++G(2d,2p) basis sets. The more stable complex involves bonding between the F atom of FArH and a H atom of acetylene, while the other isomer is a T-shaped complex with the H atom of FArH bonded to the center of the CC bond of acetylene; the zero-point energy corrected dissociation energies are 29 and 27 kJ mol(-1), respectively. Interestingly, the Ar-H harmonic vibrational stretching frequency is blueshifted in the more stable isomer and redshifted in the less stable form. The electron density rearrangement of FArH on complexation was investigated and used to explain these unusual findings.  相似文献   

4.
First-principles calculations based on density functional theory (DFT) and the generalized gradient approximation (GGA) have been used to study the adsorption of CO molecule on the perfect and defective FeS 2 (100) surfaces. The defective Fe 2 S(100) surfaces are caused by sulfur deficiencies. Slab geometry and periodic boundary conditions are employed with partial relaxations of atom positions in calculations. Two molecular orientations, Cand O-down, at various distinct sites have been considered. Total energy calculations indicated that no matter on perfect or deficient surfaces, the Fe position is relatively more favored than the S site with the predicted binding energies of 120.8 kJ/mol and 140.8 kJ/mol, respectively. Moreover, CO was found to be bound to Fe atom in vertical configuration. The analysis of density of states and vibrational frequencies before and after adsorption showed clear changes of the C–O bond.  相似文献   

5.
NO molecule adsorption on (010) surface of gold selenide (AuSe) has been studied with a periodic slab model by means of the GGA‐PW91 exchange‐correlation functional within the framework of density functional theory (DFT). Four different on‐top adsorption sites Au(1), Au(2), Se(1) and Se(2) were considered for α‐AuSe and three on‐top adsorption sites Au(1), Au(2) and Se(1) for β‐AuSe. N‐end and O‐end adsorptions of NO were investigated for the above sites. The results show that N‐end adsorptions are preferred for α‐ and β‐AuSe and O‐end adsorptions are not feasible and thought as physisorption with the weak adsorption energies from 6.0 to 10.8 kJ/mol. For the N‐end adsorptions on α‐ and β‐AuSe (010) surfaces, Au(2) sites are most favorable with the adsorption energies 89.0 and 78.0 kJ/mol for α‐ and β‐AuSe, respectively. However, the adsorptions at Au1 sites are very weak with the adsorption energies of 27.8 and 7.5 kJ/mol, respectively. In case of the adsorption of N‐down orientations of NO at Se sites for α‐ and β‐AuSe (010) surfaces, the adsorption activities of Se(1) and Se(2) sites on the α‐AuSe (010) surface and Se(1) site on the β‐AuSe (010) surface are almost the same with the adsorption energies 51.2, 52.7 and 49.2 kJ/mol. The geometric optimizations for adsorption configurations were calculated along with accounting for stretching frequency and density of states in our work.  相似文献   

6.
1 INTRODUCTION Cyanide, CN, is an important free-radical mole-cule of one carbon chemistry, organic chemistry, free-radical chemistry and cosmochemistry. And the im-portant industrial processes, such as the Andrussovreaction, depend on the reactivity of CN bond[1]. Thechemistry of cyanide is also important in the surfacechemistry of a number of C- and N-containing sys-tems[1, . During the past decade, the adsorption of 2]CN and CN-containing molecules on transition metalsurfa…  相似文献   

7.
The interaction of cyanide (CN) with different sites on Ni(111) surface is studied by using density functional theory (DPT). Ni19 cluster is used to simulate the surface. The present calculations show that the end-on bonded (through C atom) configuration is much more preferable than the side-on bonded CN or other configurations on the same adsorption site. For all adsorption modes, adsorption energies at the top, bridge, and three-fold sites on Ni(111) are comparable, with the bridge site of the end-on bonded CN (through C atom) more favorable than other adsorption sites. CN vibrational frequencies are red-shifted at all cases, except that the end-on CN bonded(through C atom) on the top site is blue-shifted. The bonding of CN on the Ni(111) surface is largely ionic.  相似文献   

8.
9.
The binding energies and the corresponding structures of a methane molecule on the silanol covered (010) surface of silicalite-1 have been investigated using ab initio methods. Different levels of calculations, HF/6-31G(d), MP2/6-31G(d) and ONIOM (MP2/6-31G(d):HF/6-31G(d)) including the correction of an error due to an unbalance of the basis set, known as basis set super position error (BSSE), as well as the size of the cluster representing the silicalite-1 surface, were systematically examined to validate the model used. The ONIOM method with the BSSE correction was found to be a compromise between accuracy and computer time required. The optimal binding site on the silicalite-1 surface was observed at the configuration where the methane molecule points one H atom toward the O atom of the silanol group. The corresponding binding energy is -1.71 kJ/mol. This value is significantly higher than that of -5.65 kJ/mol when the methane molecule approaches the center of the straight channel. At this configuration, the C atom of methane was observed to locate exactly at the center of the channel. This leads to the conclusion that the methane molecule will relatively seldom be adsorbed on the silanol covered (010) surface of silicalite-1. Instead, the adsorption process will take place directly at the center of the straight channel.  相似文献   

10.
The adsorption of H2O molecule and its dissociation products, O and OH, on CuCl(111) surface was studied with periodic slab model by PW91 approach of GGA within the framework of density functional theory. The results of geometry optimization indicate that the top site is stable energetically for H2O adsorbed over the CuCl(111) surface. The threefold hollow site is found to be the most stable adsorption site for OH and O, and the calculated adsorption energies are 309.5 and 416.5 kJ/mol, respectively. Adsorption of H2O on oxygen-precovered CuCl(111) surface to form surface hydroxyl groups is predicted to be exothermic by 180.1 kJ/mol. The stretching vibrational frequencies, Mulliken population analysis and density of states analysis are employed to interpret the possible mechanism for the computed results.  相似文献   

11.
Using FTIR and Raman spectroscopy, the formation of halogen bonded complexes of the trifluorohalomethanes CF(3)Cl, CF(3)Br and CF(3)I with ethene and propene dissolved in liquid argon has been investigated. For CF(3)Br and CF(3)I, evidence was found for the formation of C-X···π halogen bonded 1:1 complexes. At a higher ratio of CF(3)I/propene, weak absorptions due to a 2:1 complex were also observed. Using spectra recorded at different temperatures, the complexation enthalpies for the complexes were determined to be -5.3(2) kJ mol(-1) for CF(3)Br·ethene, -7.5(2) kJ mol(-1) for CF(3)I·ethene, -5.6(1) kJ mol(-1) for CF(3)Br·propene, -8.8(1) kJ mol(-1) for CF(3)I·propene and -16.5(6) kJ mol(-1) for (CF(3)I·)(2)propene. The complexation enthalpies of the hydrogen bonded counterparts, with CF(3)H as the Lewis acid, were determined to be -4.6(4) kJ mol(-1) for CF(3)H·ethene and -5.1(2) kJ mol(-1) for CF(3)H·propene. For both hydrogen bonded complexes, a blue shift, by +4.8 and +4.0 cm(-1), respectively, was observed for the C-H stretching mode. The results from the cryospectroscopic study are compared with ab initio calculations at the MP2/aug-cc-pVDZ(-PP) level.  相似文献   

12.
Quantum-state-resolved reactive-scattering dynamics of F+D(2)O-->DF+OD have been studied at E(c.m.)=5(1) kcal/mol in low-density crossed supersonic jets, exploiting pulsed discharge sources of F atom and laser-induced fluorescence to detect the nascent OD product under single-collision conditions. The product OD is formed exclusively in the v(OD)=0 state with only modest rotational excitation ( =0.50(1) kcal/mol), consistent with the relatively weak coupling of the 18.1(1) kcal/mol reaction exothermicity into "spectator" bond degrees of freedom. The majority of OD products [68(1)%] are found in the ground ((2)Pi(32) (+/-)) spin-orbit state, which adiabatically correlates with reaction over the lowest and only energetically accessible barrier (DeltaE( not equal) approximately 4 kcal/mol). However, 32(1)% of molecules are produced in the excited spin-orbit state ((2)Pi(12) (+/-)), although from a purely adiabatic perspective, this requires passage over a DeltaE( not equal) approximately 25 kcal/mol barrier energetically inaccessible at these collision energies. This provides unambiguous evidence for nonadiabatic surface hopping in F+D(2)O atom abstraction reactions, indicating that reactive-scattering dynamics even in simple atom+polyatom systems is not always isolated on the ground electronic surface. Additionally, the nascent OD rotational states are well fitted by a two-temperature Boltzmann distribution, suggesting correlated branching of the reaction products into the DF(v=2,3) vibrational manifold.  相似文献   

13.
利用密度泛函方法对丙烯腈在Cu(111)面上不同吸附位的吸附状态进行了理论研究. 计算结果表明, 丙烯腈分子通过端位N原子立式吸附在金属铜表面为弱化学吸附, 其中桥位为较佳吸附位, 结合能为-40.16 kJ/mol; 丙烯腈分子和金属铜之间发生了电荷转移, N原子的孤对电子与金属形成σ共价键; 对丙烯腈分子结构变化进行了NBO分析, 解释了丙烯腈分子吸附后被活化的原因.  相似文献   

14.
郝兰  王艳  陈光巨 《化学学报》2008,66(9):1028-1036
采用固体镶嵌势能模型和DFT/B3LYP方法研究了在Pd/MgO和Cu/MgO表面吸附CO和O2分子的电子性质. 计算结果表明, 在完美MgO(100)表面Pd原子对CO和O2的吸附能分别为206.5和84.8 kJ/mol, 因此可知Pd原子更容易吸附CO分子; 而当Pd原子附着于有氧缺陷的MgO表面时, 它对两种分子的吸附都非常弱. 相反, 附着于MgO表面的Cu原子对O2分子的吸附更为有利, 其吸附能在140~155 kJ/mol之间. 研究结果还表明, 对于双分子吸附体系, 即CO+CO, CO+O2, O2+O2体系, 双分子之间的结合力可减小完美MgO表面上Pd原子与被吸附分子的相互作用, 使吸附能减少了46~96 kJ/mol. 而对于在MgO表面上的Cu原子, 只有O2+O2 体系使吸附能减少了大约50~71 kJ/mol.  相似文献   

15.
The interactions of pyridine and 4,4'-bipyridine with the Lewis acid sites of alumina surfaces are investigated using ab initio and density functional calculations. Four cluster models of different sizes and shapes are chosen to represent the Lewis acid sites: three hydrogenated clusters Al(OH)(3), Al(4)O(9)H(6), and Al(10)O(21)H(12) and one non-hydrogenated cluster Al(4)O(6). The Hartree-Fock (HF) and B3LYP approaches with two basis sets 6-31G and 6-31+G are used to calculate the geometries, the electronic structures, the vibrational frequencies, and the adsorption energies of the complexes formed upon interaction of pyridine or 4,4'-bipyridine ligands on the cluster surfaces. Electronic structures are determined by the electrostatic potential (ESP) analysis of charges. Adsorption energies are calculated with corrections made for zero-point energies (ZPE) and basis set superposition error (BSSE). The ESP analysis of atomic charges reveals that the charge-transfer effects are more important in Lewis complexes formed with Al(4)O(6) cluster than in those formed with hydrogenated clusters Al(OH)(3), Al(4)O(9)H(6), and Al(10)O(21)H(12). The significantly larger charge transferred from pyridine or 4,4'-bipyridine ligand to Al(4)O(6) cluster should increase the adsorption energy of these complexes. Consequently, at all levels of calculation, the adsorption energies of pyridine and 4,4'-bipyridine complexed to Al(4)O(6) cluster ( approximately 46 kcal/mol), which compare very well to experiment, are strongly larger than those obtained for both pyridine and 4,4'-bipyridine ligands complexed to Al(OH)(3) (32 kcal/mol), Al(4)O(9)H(6) (24 kcal/mol) and Al(10)O(21)H(12) (25 kcal/mol) clusters. The corrected adsorption energy is found to be insensitive to basis set and electron correlation effects. It essentially depends on the ionic character of the cluster model rather than on its size. For 4,4'-bipyridine complexes, similar results to those obtained for pyridine are found, and the geometry and the amount of charge of the unbound pyridyl ring are unchanged upon complexation. The calculated vibrational frequencies and frequency shifts are little sensitive to the size and shape of the cluster model. The two ring stretching modes 8a and 19b of pyridine and 4,4'-bipyridine observed in the 1400-1600 cm(-1) region are the most affected modes upon adsorption, in good agreement with the available infrared and Raman data.  相似文献   

16.
Adsorption and chemisorption of H2 in mordenite is studied using ab initio density functional theory (DFT) calculations. The geometries of the adsorption complex, the adsorption energies, stretching frequencies, and the capacity to dissociate the adsorbed molecule are compared for different active sites. The active centers include a Br?nsted acid site, a three-coordinated surface Al site, and Lewis sites formed by extraframework cations: Na+, Cu+, Ag+, Zn2+, Cu2+, Ga3+, and Al3+. Adsorption properties of cations are compared for a location of the cation in the five-membered ring. This location differs from the location in the six-membered ring observed for hydrated cations. The five-membered ring, however, represents a stable location of the bare cation. In this position any cation exhibits higher reactivity compared with the location in the six-membered ring and is well accessible by molecules adsorbed in the main channel of the zeolite. Calculated adsorption energies range from 4 to 87 kJ/mol, depending on electronegativity and ionic radius of the cation and the stability of the cation-zeolite complex. The largest adsorption energy is observed for Cu+ and the lowest for Al3+ integrated into the interstitial site of the zeolite framework. A linear dependence is observed between the stretching frequency and the bond length of the adsorbed H2 molecule. The capacity of the metal-exchanged zeolite to dissociate the H2 molecule does not correlate with the adsorption energy. Dissociation is not possible on single Cu+ cation. The best performance is observed for the Ga3+, Zn2+, and Al3+ extraframework cations, in good agreement with experimental data.  相似文献   

17.
The limits of the use of the expectation-maximization (EM) method for the study of the heterogeneity of adsorbent surfaces were tested by calculating the adsorption energy distribution of systems having known degrees of heterogeneity. Connecting on-line two different columns allows the simulation of a heterogeneous system. The two columns used were endcapped, C(18)-bonded silica used as stationary phases and having different degrees of C(18) chain coverages (0.42 and 2.03 micromol/m(2)). The adsorption constants of phenol measured by frontal analysis (FA) are significantly different on these two columns. On each column, the adsorption behavior was best accounted for by a bi-Langmuir isotherm model, corresponding to a heterogeneous surface with a bimodal energy distribution. The difference between the adsorption energies on the weak adsorption sites of the two columns is 1.5 kJ/mol. The energy difference of their high energy sites is 2.2 kJ/mol. The EM method can readily distinguish between adsorption sites having energies that differ by more than 5 kJ/mol after more than 10 million iterations, but it cannot distinguish between adsorption sites for which this energy difference is less than 2 kJ/mol, even after 100 million iterations. For highly heterogeneous systems, (e.g., those with more than three different types of adsorption sites), the EM program does not converge necessarily towards the actual energy distribution function but toward a simpler one, having fewer adsorption sites that are almost equally spaced in the energy space. This failure of the EM program is related to the fact that, despite the excellent precision of the FA measurements (<1%), any series of adsorption data can be represented by several distinct AEDs. Thus, the degree of heterogeneity of RPLC adsorbents determined with the EM method might often be minimized, resulting in erroneous values of the isotherm parameters.  相似文献   

18.
Ewald summation is used to apply semiempirical long-range dispersion corrections (Grimme, J Comput Chem 2006, 27, 1787; 2004, 25, 1463) to periodic systems in density functional theory. Using the parameters determined before for molecules and the Perdew-Burke-Ernzerhof functional, structure parameters and binding energies for solid methane, graphite, and vanadium pentoxide are determined in close agreement with observed values. For methane, a lattice constant a of 580 pm and a sublimation energy of 11 kJ mol(-1) are calculated. For the layered solids graphite and vanadia, the interlayer distances are 320 pm and 450 pm, respectively, whereas the graphite interlayer energy is -5.5 kJ mol(-1) per carbon atom and layer. Only when adding the semiempirical dispersion corrections, realistic values are obtained for the energies of adsorption of C(4) alkenes in microporous silica (-66 to -73 kJ mol(-1)) and the adsorption and chemisorption (alkoxide formation) of isobutene on acidic sites in the micropores of zeolite ferrierite (-78 to -94 kJ mol(-1)). As expected, errors due to missing self-interaction correction as in the energy for the proton transfer from the acidic site to the alkene forming a carbenium ion are not affected by the dispersion term. The adsorption and reaction energies are compared with the results from M?ller-Plesset second-order perturbation theory with basis set extrapolation.  相似文献   

19.
We used computational modeling, based on Density Functional Theory, to help understand the preference for the formation of silanol nests and the substitution of Si by Ti or Al in different crystallographic positions of the MSE-type framework. All these processes were found to be energetically favorable by more than 100 kJ/mol. We suggested an approach for experimental identification of the T atom position in Ti-MCM-68 zeolite via simulation of infrared spectra of pyridine and acetonitrile adsorption at Ti. The modeling of adsorption of hydrogen peroxide at Ti center in the framework has shown that the molecular adsorption was preferred over the dissociative adsorption by 20 to 40 kJ/mol in the presence or absence of neighboring T-atom vacancy, respectively.  相似文献   

20.
采用广义梯度密度泛函理论(GGA)的BLYP方法结合周期性平板模型,以原子簇Cu41为模拟表面,对DOPA醌分子在Cu(100)表面不同位置的吸附模型进行了构型优化、能量计算以及Mulliken布居分析,结果表明通过相邻的羰基垂直吸附在表面的桥位是其最佳吸附方式,吸附能为247.2310kJ/mol;其次为顶位、顶位R45和穴位,吸附能分别为227.7162kJ/mol、220.7305kJ/mol和217.8456kJ/mol。Mulliken布居分析结果表明整个吸附体系发生了由Cu原子向DOPA醌分子的电荷转移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号