首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of inductively coupled plasma mass spectrometry (ICP-MS) in the production of environmental certified reference materials by the National Research Council of Canada is reviewed. Particular emphasis is placed on the use of isotope dilution ICP-MS. Results for fresh and saline natural waters, fish tissues and sediments are presented to illustrate the impressive capabilities of this technique.  相似文献   

2.
Summary A method utilizing a miniature chelated ion-exchanger column of SO3-oxine CM-cellulose has been developed to increase the sensitivity for multielement measurements by inductively coupled plasma mass spectrometry (ICP-MS). This matrix/analyte separation and preconcentration technique has been used to preconcentrate Mn, Co, Ni, Cu, Cd, and Pb from natural water samples. The multielement detection limits are in the low ppt (pg/mL) range. This FIA-ICP-MS method has been applied to the determination of various trace levels of metal ions in riverine reference material SLRS-2 and open ocean seawater reference material NASS-3.  相似文献   

3.
A flow injection system incorporating an alumina microcolumn has been coupled to inductively coupled plasma mass spectrometry (ICP-MS) for on-line preconcentration and determination of platinum (IV) in natural waters. Depending on the nature of the sample, a nominal preconcentration factor of up to 600 can be achieved by eluting with 50microl of 2 mol/l NH(4)OH. The limit of detection after a 5 min preconcentration time was 4 ngl(-1), with a relative standard deviation of 4% (100 ngl(-1) working solution). The proposed method was assessed for the determination of platinum (IV) in natural waters, motor car exhaust and some common analytical reagents.  相似文献   

4.
This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared.  相似文献   

5.
Quantitative determination of trace glyphosate and phosphate in waters was achieved by coupling ion chromatography (IC) separation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The separation of glyphosate and phosphate on a polymer anion-exchange column (Dionex IonPac AS16, 4.0 mm x 250 mm) was obtained by eluting them with 20 mM citric acid at 0.50 mL min(-1), and the analytes were detected directly and selectively by ICP-MS at m/z = 31. Parameters affecting their chromatographic behaviors and ICP-MS characteristics were systematically examined. Based on a 500-microL sample injection volume, the detection limits were 0.7 microgL(-1) for both glyphosate and phosphate, and the calibrations were linear up to 400 microgL(-1). Polyphosphates, aminomethylphosphonic acid (the major metabolite of glyphosate), non-polar and other polar phosphorus-containing pesticides showed different chromatographic behaviors from the analytes of interest and therefore did not interference. The determination was also interference free from the matrix anions (nitrate, nitrite, sulphate, chloride, etc.) and metallic ions. The analysis of certified reference material, drinking water, reservoir water and Newater yielded satisfactory results with spiked recoveries of 97.1-107.0% and relative standard deviations of < or = 7.4% (n = 3). Compared to other reported methods for glyphosate and phosphate, the developed IC-ICP-MS method is sensitive and simple, and does not require any chemical derivatization, sample preconcentration and mobile phase conductivity suppression.  相似文献   

6.
A flow injection system incorporating an alumina microcolumn has been coupled to inductively coupled plasma mass spectrometry (ICP-MS) for on-line preconcentration and determination of platinum (IV) in natural waters. Depending on the nature of the sample, a nominal preconcentration factor of up to 600 can be achieved by eluting with 50l of 2 mol/l NH4OH. The limit of detection after a 5 min preconcentration time was 4 ngl-1, with a relative standard deviation of 4% (100 ngl-1 working solution). The proposed method was assessed for the determination of platinum (IV) in natural waters, motor car exhaust and some common analytical reagents.  相似文献   

7.
A novel technique has been developed for the determination of trace amounts of methylmercury in sediment and biological tissues. The well known water vapor distillation technique for the isolation of methylmercury from different matrices was coupled with an RP C18 preconcentration using dithiocarbamate complexation. A newly developed HPLC-method allowed the separation of five different mercury species at different mercury masses with HPF/HHPN (High-Performance-Flow/Hydraulic-High-Pressure-Nebulizing) and detection by ICP-MS. The method takes advantage of the ability to measure individual isotopes. Recoveries of the water vapor distillation procedure samples for different mercury compounds from sediment were tested. For methylmercury, the detection limit for a 0.5 g sample was calculated to be 0.025 μg/kg. The new technique was assured using different reference materials.  相似文献   

8.
A flow injection (FI) on-line preconcentration procedure by using a nanometer-sized alumina packed micro-column coupled to inductively coupled plasma mass spectrometry (ICP-MS) was described for simultaneous determination of trace metals (V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb) in the environmental samples. The effects of pH value, sample flow rate, preconcentration time, and interfering ions on the preconcentration of analytes have been investigated. Under the optimized operating conditions, the adsorption capacity of the nanometer-sized alumina for V, Cr, Mn, Co, Ni, Cu, Zn, Cd and Pb were found to be 11.7, 13.6, 15.7, 9.5, 12.2, 13.3, 17.1, 17.7 and 17.5 mg g−1, respectively. With 60 s preconcentration time and 60 s elution time, an enrichment factor of 5 and the sampling frequency of 15 h−1 were obtained. The proposed method has been applied to the determination of trace metals in environmental certified reference materials and natural water samples with satisfactory results.  相似文献   

9.
Three multielement methods: (1) inductively coupled plasma mass spectrometry (ICP-MS), (2) inductively coupled plasma atomic emission spectroscopy (ICP-AES), and (3) spark source mass spectrometry (SSMS) were used for the determination of additives in the samples of germanium and germanium oxide. The detection limits of direct SSMS and ICP-AES/ICP-MS were compared using the autoclave predissolution of germanium and germanium dioxide samples. It was shown that in the latter case, the detection limits could be significantly improved by the separation of germanium from analytes by distillation. In this case, the detection limits of such limiting elements like Th and U can reach the level n 10?10 wt %.  相似文献   

10.
A novel technique has been developed for the determination of trace amounts of methylmercury in sediment and biological tissues. The well known water vapor distillation technique for the isolation of methylmercury from different matrices was coupled with an RP C18 preconcentration using dithiocarbamate complexation. A newly developed HPLC-method allowed the separation of five different mercury species at different mercury masses with HPF/HHPN (High-Performance-Flow/Hydraulic-High-Pressure-Nebulizing) and detection by ICP-MS. The method takes advantage of the ability to measure individual isotopes. Recoveries of the water vapor distillation procedure samples for different mercury compounds from sediment were tested. For methylmercury, the detection limit for a 0.5 g sample was calculated to be 0.025 μg/kg. The new technique was assured using different reference materials. Received: 23 October 1996 / Revised: 14 February 1997 / Accepted: 16 February 1997  相似文献   

11.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

12.
Summary Methods for the determination of total Sn in environmental samples (waters, animal tissue, plant material, sediments and coal fly ash), by graphite furnace atomic absorption spectrometry (GFAAS) and inductively coupled plasma mass spectrometry (ICP-MS) have been developed and evaluated.Noble metals (Ag, Au, Pd, Pt, Rh) under reducing conditions were studied as matrix modifiers for the determination of Sn by GFAAS. The maximum ashing temperature (1400°C), highest sensitivity and the best absolute detection limit (4 pg) were achieved when Pd was used in the presence of hydroxylamine hydrochloride. The achievable sensitivity depended strongly on the chemical composition of the matrix.Both GFAAS and ICP-MS appeared to be equally sensitive techniques for the direct determination of Sn in waters, though ICP-MS was a more convenient and sensitive technique for the determination of Sn in digested biological and geological materials.
Bestimmung von Zinn in Umweltproben durch Graphitrohr-AAS und ICP-MS
  相似文献   

13.
Tang J  Wai CM 《Talanta》1989,36(11):1129-1133
Lipophilic crown ether carboxylic acids such as 2-(sym-dibenzo-16-crown-5-oxy)stearic acid with a cavity size comparable to the ionic radius of rare-earth elements are selective chelation agents for preconcentration and separation of lanthanides from natural waters for NAA. Interfering matrix elements such as sodium and bromine can be simultaneously eliminated during the extraction. The lanthanides can be back-extracted into a dilute acid solution for NAA, thus providing a large preconcentration factor. This two-step extraction method appears suitable for the determination of lanthanides in natural waters and in biological samples.  相似文献   

14.
Dwinna Rahmi 《Talanta》2007,72(2):600-606
The multielement determination of trace metals in seawater was carried out by inductively coupled plasma mass spectrometry (ICP-MS) with aid of a down-sized chelating resin-packed minicolumn for preconcentration. The down-sized chelating resin-packed minicolumn was constructed with two syringe filters (DISMIC 13HP and Millex-LH) and an iminodiacetate chelating resin (Chelex 100, 200-400 mesh), with which trace metals in 50 mL of original seawater sample were concentrated into 0.50 mL of 2 M nitric acid, and then 100-fold preconcentration of trace metals was achieved. Then, 0.50 mL analysis solution was subjected to the multielement determination by ICP-MS equipped with a MicroMist nebulizer for micro-sampling introduction. The preconcentration and elution parameters such as the sample-loading flow rate, the amount of 1 M ammonium acetate for elimination of matrix elements, and the amount of 2 M nitric acid for eluting trace metals were optimized to obtain good recoveries and analytical detection limits for trace metals. The analytical results for V, Mn, Co, Ni, Cu, Zn, Mo, Cd, Pb, and U in three kinds of seawater certified reference materials (CRMs; CASS-3, NASS-4, and NASS-5) agreed well with their certified values. The observed values of rare earth elements (REEs) in the above seawater CRMs were also consistent with the reference values. Therefore, the compiled reference values for the concentrations of REEs in CASS-3, NASS-4, and NASS-5 were proposed based on the observed values and reference data for REEs in these CRMs.  相似文献   

15.
Summary The versatility of ICP-MS in marine analytical chemistry is illustrated with applications to the multielement trace analysis of two recently released marine reference materials, the coastal seawater CASS-2 and the non-defatted lobster hepatopancreas tissue LUTS-1, and to the determination of tributyltin and dibutyltin in the harbour sediment reference material PACS-1 by HPLC-ICP-MS. Seawater analyses were performed after separation of the trace elements either by adsorption on immobilized 8-hydroxy-quinoline or by reductive coprecipitation with iron and palladium. Simultaneous determination of seven trace elements in LUTS-1, including mercury, by isotope dilution ICP-MS, was achieved after dissolution by microwave digestion with nitric acid and hydrogen peroxide. Butyltin species in PACS-1 were separated by cation exchange HPLC of an extract of the sediment; method detection limits for tributyltin and dibutyltin in sediment samples are estimated to be 5 ng Sn/g and 12 ng Sn/g, respectively.Summer assistant 1988Summer assistant 1989  相似文献   

16.
Here we review chitosan-based materials for solid-phase extraction of metal and metalloid ions prior to their determination by atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, mass spectrometry, and some other spectrometric techniques. We show that nearly zero affinity of chitosan and its derivatives to alkali and alkali-earth metal ions is very beneficial for separation of analytes from the salt matrix, which is always present in natural waters, waste streams, and geological samples and interferes with analytical signals. Applicability of chitosan to selective recovery of different metal and metalloid ions can be significantly improved via functionalization with N-, S-, and O-containing groups imparting chitosan with additional electron donor atoms and capability to form stable five- and six-membered chelate rings with metal ions. Among most promising materials for analytical preconcentration, we discussed chitosan-based composites; carboxyalkyl chitosans; chitosan derivatives containing residues of aminoacids, iminodiacetic acid, ethylenediaminetetraacetic and diethylenetriaminepentaacetic acids; chitosans modified with aliphatic and aromatic amines, heterocyclic fragments (pyridyl, imidazole), and crown ethers. We have shown that most chitosan derivatives provide only group selectivity toward metal ions; however, optimization of recovery conditions allows metals and metalloids speciation and efficient separation of noble and transition metal ions.  相似文献   

17.
A new preconcentration technique for flow analysis was proposed. It involves extraction-chromato-graphic separation of analytes, back extraction into an aqueous solution, and chromatomembrane separation of the aqueous and organic phases. The technique formed the basis of a flow-injection procedure for the on-line determination of total phenols in natural water. The analytical range was 0.5–30 Μg/L in terms of phenol.  相似文献   

18.
A method has been developed for the separation of the entire group of rare-earth elements from high-purity calcium chloride by countercurrent chromatography, and subsequent determination of the elements by ICP-MS. A solution of diphenyl[dibutylcarbamoylmethyl]phosphine oxide in chloroform (0.5 mol L(-1)) has been chosen as reagent for the extraction and preconcentration of trace rare-earth elements from aqueous 5% CaCl2 solution, 3 mol L(-1) in HNO3 and 0.1 mol L(-1) in HClO4. The analytes are back-extracted into a small volume of water and the aqueous eluate is subjected to ICP-MS measurements. The performance characteristics of the procedure developed have been checked by use of the standard addition technique and a real CaCl2 sample (Merck product) has been analyzed. The results obtained demonstrate the applicability of countercurrent chromatography to the determination of ultratrace elements.  相似文献   

19.
An analytical methodology for the fast separation and determination of iodophenol species in natural water samples was developed using capillary electrophoresis (CE) coupled to inductively coupled plasma-mass spectrometry (ICP-MS). Based on the element-specific and highly sensitive detection provided by ICP-MS, the methodology has been applied to the analysis of 2-iodophenol, 4-iodophenol, and 2,4,6-triiodophenol. The use of solid-phase microextraction (SPME), after proper optimization, improved the signal by a factor of 100 leading to detection limits in the sub microg.L(-1). Different desorption conditions of iodophenol compounds from the SPME microfiber were studied to achieve the optimum preconcentration factor and best analytical performance. Different CE conditions were studied to achieve complete baseline separation of iodophenols in short migration times. Three different CE buffer systems were evaluated using ICP-MS detection. A buffer solution containing 20 mmol.L(-1) 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) and an applied potential of +22 kV were finally selected leading to a maximum separation time of 6.6 min. A relative standard deviation (%RSD) of about 5.0% for ten consecutive determinations was obtained. Finally, the speciation methodology developed was utilized for the determination of iodophenol compounds in natural water samples.  相似文献   

20.
pH-mediated dual-cloud point extraction (dCPE) technique for capillary electrophoresis (CE) determination of phenol and m-nitrophenol is proposed in this paper. This technique for the preconcentration and clean-up of the two analytes includes two steps through simple pH-mediation. The analytes are transferred into surfactant-rich phase in the first step (under acidic condition) with Triton X-114 as the extractant because the two analytes become hydrophobic in acidic solution. They were back-extracted into alkaline aqueous phase in the second cloud point step. Because the concentration of Triton X-114 in the final aqueous solution after dCPE is only around critical micelle concentration, its adsorption on the inner wall of capillary and its possible influence on electrophoretic separation are eliminated. Baseline separation of phenol and m-nitrophenol is realized in a 60 cm x 75 microm i.d. capillary at 18 kV using 50 mM boric acid solution (pH 9.5). The preconcentration factors are 24.0 for phenol and 22.5 for m-nitrophenol. The detection limits of phenol and m-nitrophenol are 2.0 x 10(-6) mol L(-1) and 2.5 x 10(-6) mol L(-1), respectively. The proposed method was successfully applied to the determination of two analytes in spiked natural water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号