首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李华钟 《物理》2005,34(8):548-550
文章讨论的主题是现代非亚贝尔规范场的理论思想.文章说明了这个理论思想是承传、推广和拓展了爱因斯坦的物理思想、目标和原则.规范场理论把爱因斯坦后半生努力奋斗而未能达到的目标提到现实,更加迫近和部分地圆了爱因斯坦的梦想。  相似文献   

2.
A new gauge theory of gravity on flat spacetime has recently been developed by Lasenby, Doran, and Gull. Einstein’s principles of equivalence and general relativity are replaced by gauge principles asserting, respectively, local rotation and global displacement gauge invariance. A new unitary formulation of Einstein’s tensor illuminates long-standing problems with energy–momentum conservation in general relativity. Geometric calculus provides many simplifications and fresh insights in theoretical formulation and physical applications of the theory.  相似文献   

3.
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton‘s theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein‘s general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.  相似文献   

4.
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.  相似文献   

5.
Tulsi Dass 《Pramana》1984,23(4):433-443
A general framework for the gauge theory of the affine group and its various subgroups in terms of connections on the bundle of affine frames and its subbundles is given, with emphasis on the correct gauging of groups including space-time translations. For consistency of interpretation, the appropriate objects to be identified with gravitational vierbeins in such theories are not the translational gauge fields themselves, but their pull backs,via appropriate bundle homomorphisms, to the bundle of frames. This automatically solves the problems usually encountered in constructing a gauge theory of the conventional sort for groups containing translations. We give a consistent formulation of the Poincare gauge theory and also of the theory based on translational gauge invariance which, in the absence of matter fields with intrinsic spin, gives a local Lorentz invariant theory equivalent to Einstein gravity.  相似文献   

6.
We will discuss some analogies between internal gauge theories and gravity in order to better understand the charge concept in gravity. A dimensional analysis of gauge theories in general and a strict definition of elementary, monopole, and topological charges are applied to electromagnetism and to teleparallelism, a gauge theoretical formulation of Einstein gravity. As a result we inevitably find that the gravitational coupling constant has dimension /l 2, the mass parameter of a particle dimension /l, and the Schwarzschild mass parameter dimension l (where l means length). These dimensions confirm the meaning of mass as elementary and as monopole charge of the translation group, respectively. In detail, we find that the Schwarzschild mass parameter is a quasi–electric monopole charge of the time translation whereas the NUT parameter is a quasi–magnetic monopole charge of the time translation as well as a topological charge. The Kerr parameter and the electric and magnetic charges are interpreted similarly. We conclude that each elementary charge of a Casimir operator of the gauge group is the source of a (quasi-electric) monopole charge of the respective Killing vector.  相似文献   

7.
A new kind of gauge theory is introduced, where the minimal coupling and corresponding covariant derivatives are defined in the space of functions pertaining to the functional Schrödinger picture of a given field theory. While, for simplicity, we study the example of a \(\mathcal{U}(1)\) symmetry, this kind of gauge theory can accommodate other symmetries as well. We consider the resulting relativistic nonlinear extension of quantum mechanics and show that it incorporates gravity in the (0+1)-dimensional limit, similar to recently studied Schrödinger-Newton equations. Gravity is encoded here into a universal nonlinear extension of quantum theory. A probabilistic interpretation (Born’s rule) holds, provided the underlying model is scale free.  相似文献   

8.
Associated with any choice of outgoing null (characteristic) coordinate, we construct a null tetrad which is determined uniquely by purely local information. Unlike other well-known characteristic gauge conditions [1–4], this canonical tetrad is determined at any point solely by the metric and its first derivatives at that point. The tetrad leads to a radial coordinate which is also uniquely determined by purely local information. These properties greatly simplify the structure of the hypersurface Einstein equations and may be used to directly compare metrics with compatible null foliations.  相似文献   

9.
WU Ning  ZHANG Da-Hua   《理论物理通讯》2007,47(3):503-511
A systematic method is developed to study the classical motion of a mass point in gravitational gauge field.First,by using Mathematica,a spherical symmetric solution of the field equation of gravitational gauge field is obtained,which is just the traditional Schwarzschild solution.Combining the principle of gauge covariance and Newton's second law of motion,the equation of motion of a mass point in gravitational field is deduced.Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field,we can discuss classical tests of gauge theory of gravity,including the deflection of light by the sun,the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun.It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.  相似文献   

10.
We apply the method of moving anholonomic frames with associated nonlinear connections to the (pseudo) Riemannian space geometry and examine the conditions when locally anisotropic structures (Finsler like and more general ones) could be modeled in the general relativity theory and/or Einstein–Cartan–Weyl extensions [1]. New classes of solutions of the Einstein equations with generic local anisotropy are constructed. We formulate the theory of nearly autoparallel (na) maps generalizing the conformal transforms and formulate the Einstein gravity theory on na–backgrounds provided with a set of na–map invariant conditions and local conservation laws. There are illustrated some examples when vacuum Einstein fields are generated by Finsler like metrics and chains of na–maps.  相似文献   

11.
Generalized differential forms of type N = 2, and flat generalized connections are used to describe the SO(p, q) form of Cartan's structure equations for metric geometries, source-free Yang-Mills fields, and the Einstein–Yang-Mills equations in four dimensions. Maxwell's equations for type N = 2 forms are also constructed.  相似文献   

12.
The pentalogy (Mallios, A. and Raptis, I. (2001). International Journal of Theoretical Physics 40, 1885; Mallios, A. and Raptis, I. (2002). International Journal of Theoretical Physics 41, 1857; Mallios, A. and Raptis, I. (2003).International Journal of Theoretical Physics 42, 1479; Mallios, A. and Raptis, I. (2004). ‘paper-book’/research monograph); I. Raptis (2005). International Journal of Theoretical Physics (to appear)is brought to its categorical climax by organizing the curved finitary spacetime sheaves of quantumcausal sets involved therein, on which a finitary (:locally finite), singularity-free, background manifold independent and geometrically prequantized version of the gravitational vacuum Einstein field equations were seen to hold, into a topos structure . We show that the category of finitary differential triads is a finitary instance of an elementary topos proper in the original sense dueto Lawvere and Tierney. We present in the light of Abstract Differential Geometry (ADG) a Grothendieck-type of generalization of Sorkin’s finitary substitutes of continuous spacetime manifoldtopologies, the latter’s topological refinement inverse systems of locally finite coverings and their associated coarse graining sieves, the upshot being that is also a finitary example of a Grothendieck topos. In the process, we discover that the subobject classifier Ω fcq of is a Heyting algebra type of object, thus we infer that the internal logic of our finitary topos is intuitionistic, as expected. We also introduce the new notion of ‘finitary differential geometric morphism’ which, as befits ADG, gives a differential geometric slant to Sorkin’s purely topological acts of refinement (:coarse graining). Based on finitary differential geometric morphisms regarded as natural transformations of the relevant sheaf categories, we observe that the functorial ADG-theoretic version of the principle of general covariance of GeneralRelativity is preserved under topological refinement. The paper closes with a thorough discussion of four future routes we could take in order to further develop our topos-theoretic perspective on ADG-gravity along certain categorical trends in current quantum gravity research. PACS numbers: 04.60.-m, 04.20.Gz, 04.20.-q Posted at the General Relativity and Quantum Cosmology (gr-qc) electronic archive (www.arXiv.org), as: gr-qc/0507100.  相似文献   

13.
We introduce the notion of a quantum structure on an Einstein general relativistic classical spacetime M. It consists of a line bundle over M equipped with a connection fulfilling certain conditions. We give a necessary and sufficient condition for the existence of quantum structures and classify them. The existence and classification results are analogous to those of geometric quantisation (Kostant and Souriau), but they involve the topology of spacetime, rather than the topology of the configuration space. We provide physically relevant examples, such as the Dirac monopole, the Aharonov–Bohm effect and the Kerr–Newman spacetime. Our formulation is carried out by analogy with the geometric approach to quantum mechanics on a spacetime with absolute time, given by Jadczyk and Modugno.  相似文献   

14.
Conformal gravity has been proposed as an alternative theory of gravity which can account for flat galactic rotation curves without recourse to copious quantities of dark matter. However it was shown that for the usual choice of the metric, the result is catastrophic for null or highly relativistic geodesics, the effect is exactly the opposite yielding an effective repulsion and less deflection in this case. It is the point of this paper, that any result for massive geodesics depends on the choice of conformal gauge, in contradistinction to the case of null geodesics. We show how it is possible to choose the gauge so that the theory is attractive for all geodesics.  相似文献   

15.
In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.  相似文献   

16.
It is shown that there exist both dynamically stable and unstable dilute-gas Bose–Einstein condensates that, in the hydrodynamic limit, exhibit a behavior completely analogous to that of gravitational black holes. The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy states. We illustrate these features in two qualitatively different one-dimensional models. We have also simulated the creation of a stable sonic black hole by solving the Gross–Pitaevskii equation numerically for a condensate subject to a trapping potential that is adiabatically deformed. A sonic black hole could in this way be created experimentally with state-of-the-art or planned technology.  相似文献   

17.
Based on gauge principle, a new model on quantum gravity is proposed in the frame work of quantum gauge theory of gravity. The model has local gravitational gauge symmetry, and the field equation of the gravitational gauge field is just the famous Einstein‘s field equation. Because of this reason, this model is called quantum gauge general relativity, which is the consistent unification of quantum theory and general relativity. The model proposed in this paper is a perturbatively renormalizable quantum gravity, which is one of the most important advantage of the quantum gauge general relativity proposed in this paper. Another important advantage of the quantum gauge general relativity is that it can explain both classical tests of gravity and quantum effects of gravitational interactions, such as gravitational phase effects found in COW experiments and gravitational shielding effects found in Podkletnov experiments.  相似文献   

18.
Under the flat Euclidean space–time background, the expressions for the leading terms of several two-point curvature vacuum correlation functions in N-dimensional Einstein gravity are calculated by using the perturbative expansion of the metric. It is shown that the contributions of the leading terms of such two-point curvature vacuum correlation functions are all vanishing.  相似文献   

19.
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy , we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) . We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in . We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's , which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.  相似文献   

20.
We construct a novel Wetterich-type functional renormalization group equation for gravity which encodes the gravitational degrees of freedom in terms of gauge-invariant fluctuation fields. Applying a linear-geometric approximation the structure of the new flow equation is considerably simpler than the standard Quantum Einstein Gravity construction since only transverse-traceless and trace part of the metric fluctuations propagate in loops. The geometric flow reproduces the phase-diagram of the Einstein–Hilbert truncation including the non-Gaussian fixed point essential for Asymptotic Safety. Extending the analysis to the polynomial f(R)f(R)-approximation establishes that this fixed point comes with similar properties as the one found in metric Quantum Einstein Gravity; in particular it possesses three UV-relevant directions and is stable with respect to deformations of the regulator functions by endomorphisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号